Гаусс сначала мало занимался, как известно, отработкой своих открытий для публикации; особенно это характерно для ранних периодов его развития. «После 1830 года он дал доступные общественности доказательства своих идей, (прежде всего в упомянутой Theoria… 1831 года. Там он подробно изучал числа формы a+ib, причем a и b должны быть целыми числами (числа этой формы иногда называют “гауссовскими числами”). Он представил там чисто арифметическое рассмотрение, прибавив также
К. Вейерштрасс и его теория чисел
Теодор Вейерштрасс (1815–1897) родился в Остенфельде (Вестфалия). В 1834 году он начал изучать право в Боннском университете, но через 4 года покинул университет, не сдавая экзаменов. Затем он приступил к изучению математики в университете Мюнстера; в 1841 году сдал там экзамен на звание учителя, после чего преподавал в гимназии. В 1856 году ему было присвоено звание почетного доктора Кёнигсбергского университета. В 1864 году Вейерштрасс получил кафедру математики в Берлинском университете; с 1856 года он был членом Берлинской академии наук (См.: J. Diendonné, op. cit. S. 912–913). Начало разработки Вейерштрассом
Ход мысли Вейерштрасса (взятый скорее не в его полной математической конкретности, а с точки зрения теоретического и методологического аспектов) состоит в следующем. «Вейерштрасс делает множество N предпосылкой позитивного целого числа и числа 0 и начинает с дефиниции понятия равенства, которое играет фундаментальную роль в его теории реальных чисел. Он говорит, что два целых числа равны друг другу, если они составлены из равного количества элементов, и это отношение (обозначаемое равенством
Вводились также понятия «точных (genauen) частей единства» и конструируемого «агрегата». Изучение ФА показало, что роль понятия «единства» в математике станет одной из центральных тем этой работы Гуссерля. Например число 4/3, рассуждает Вейерштрасс, может быть показано как агрегат, т. е. через сумму слагаемых.[242]
Отсюда Вейерштрасс выводит дефиницию равенства двух рациональных чисел: «Два числа равны друг другу, если одно может …может быть трансформировано так, чтобы оба они имели те же самые и только те же самые элементы и каждого в отдельности содержалось бы в том же самом целом числе» (Цит. по J. Diendonné. S. 390).В результате вводится новая разновидность числовых понятий и рождается
Вейерштрасса причисляют (это имеет место, например, у А. Пуанкаре) – наряду с Гауссом, Коши и Риманом – к когорте создателей современной теории аналитических функций. При этом упомянутые выдающиеся математики подходили к проблеме с разных сторон. У Коши это понятие ещё имело, согласно Пуанкаре, ограниченный выводной характер (все сводилось к проблеме определенного интеграла). У Римана, естественно, «доминировали геометрические представления, и функция давала лишь одно правило, согласно которому можно было трансформировать плоскость».[243]
«Вейерштрасс, – отмечает Пуанкаре, – придерживается противоположной позиции; исходный пункт у него – потенциальный ряд, Funktionselement, который ограничивается Konvergenzkreis, чтобы функцию продолжить за пределы этого круга, мы и имеем в распоряжении метод аналитического продолжения. Таким способом все выводится из учения о рядах, и эта теория, в свою очередь опирается на прочный арифметический базис» (Ibidem. S. 135).С вейерштрассовской теорией функций Гуссерль познакомился непосредственно на лекциях и занятиях со своим учителем. Она возникала, отрабатывалась Вейерштрассом в течение десятилетий, причем, как и все другие идеи Вейерштрасса, именно в процессе подготовки и чтения лекций. А их, как говорилось, не просто слушал, но и глубоко осваивал Э. Гуссерль.