Парадокс с совпадающими днями рождения лучше преподносить в другой, более красочной форме. Математически можно доказать, что если в одной комнате соберутся всего-навсего 23 человека, то с вероятностью более 50 % дни рождения совпадут хотя бы у двух из них. Два читателя чернового варианта моей книги попросили меня обосновать это поразительное заявление. Здесь проще будет рассчитать вероятность того, что ничьи дни рождения не совпадут, а потом вычесть ее из единицы. Забудем про високосные годы — с ними куча возни, которой они совершенно не стоят. Допустим, я побьюсь с вами об заклад, что в комнате, где находятся 23 человека, как минимум двое родились в один день. А вы — просто для удобства наших рассуждений — поставите на то, что дни рождения ни у кого совпадать не будут. Чтобы выяснить, кто прав, мы будем собирать данные от каждого из 23 испытуемых поочередно: пусть в комнате изначально находится только один человек, а остальные добавляются друг за другом. Если в какой-то момент обнаруживается совпадение, то я выигрываю пари и мы заканчиваем игру, не интересуясь оставшимися участниками эксперимента. Если же мы добираемся до двадцать третьего человека, а совпадения по-прежнему нет, выигрываете вы.
Пока в комнате присутствует только один испытуемый — назовем его испытуемым
Если перемножить все эти 22 дроби (вы дойдете по нисходящей до 343/365), получится около 0,49. Такова вероятность, что ни у кого из находящихся в комнате людей дни рождения не совпадают. Выходит, вероятность того, что хотя бы двое из 23 собравшихся отмечают день рождения одновременно, слегка переваливает за 1/2. Интуиция большинства людей посоветовала бы ставить против такого совпадения. Но это было бы ошибкой. Именно такие интуитивные ошибки и сбивают нас с толку, когда мы характеризуем совпадения как «необъяснимые».
Вот пример реально случившегося совпадения, шансы которого мы можем попытаться приблизительно оценить (хоть это и будет чуть-чуть труднее). Однажды моя жена купила своей матери в подарок красивые антикварные часики с розовым циферблатом. Принеся их домой и отодрав ценник, она с изумлением обнаружила, что на обратной стороне выгравированы инициалы ее матери —
Так какова же в действительности вероятность столь впечатляющего совпадения? Подсчитаем ее для начала незамысловатым способом. В английском алфавите 26 букв. Если инициалы вашей матери состоят из трех букв и вам попадутся часы, на которых выгравированы три случайные буквы, то вероятность совпадения одних инициалов с другими составит 1/26 × 1/26 × 1/26, иначе говоря, 1/17 576. В Британии около 55 миллионов жителей. Если каждый из них приобретет старинные часики с гравировкой, то можно ожидать, что более 3000 человек изумленно вскрикнут, обнаружив, что инициалы их матерей уже были начертаны на покупке.