На самом деле все не так просто. Во-первых, если мы прислушаемся к тиканью “молекулярных часов”, то поймем, что оно не размеренное. Скорее оно будет звучать как счетчик Гейгера у источника радиации. То есть оно будет неупорядоченным. Каждый “щелчок” – закрепление одной мутации. Согласно нейтральной теории, интервал между “щелчками” может быть длинным или коротким (так называемый генетический дрейф). В счетчике Гейгера время следующего “щелчка” непредсказуемо. Но (это важно) предсказуем средний интервал для большого количества “щелчков”. Остается лишь надеяться, что “молекулярные часы” предсказуемы, как и счетчик Гейгера. В целом это так.
Во-вторых, скорость часов варьирует от гена к гену в пределах генома. Это генетики заметили давно, еще когда они умели изучать лишь белковые продукты ДНК, а не ее саму. Скорость эволюции цитохрома
Почему гены мутируют с разной скоростью? Что отличает “гранитные” гены от “радиевых”? Не забывайте, что “нейтральный” не значит “бесполезный” – это значит “равнополезный”. Полезны и “гранитные”, и “радиевые” гены. Просто “радиевые” могут меняться во многих местах и при этом оставаться полезными. Из-за особенностей работы гена некоторые его участки могут безнаказанно изменяться, не влияя на функциональность всего гена. Другие участки того же гена чувствительнее к мутациям, и их функциональность в результате мутаций нарушается. Возможно, у всех генов есть “гранитные” участки, которые для сохранения функциональности гена не должны сильно изменяться, и “радиевые” участки, которые могут беспрепятственно изменяться до тех пор, пока эти изменения не затронут “гранитный” участок. Возможно, ген цитохрома
Однако “довольно постоянна” не значит “постоянна”, и это ставит перед нами довольно серьезную проблему. Ход часов не просто нестабилен. Скорость мутирования одного и того же гена у одних существ может быть выше, чем у других. У бактерий система репарации ДНК менее эффективна, чем наша “вычитка текста”, и поэтому их гены мутируют с более высокой скоростью и “молекулярные часы” идут быстрее. У грызунов репаративные ферменты тоже работают довольно неряшливо, и это объясняет, почему молекулярная эволюция у грызунов идет быстрее, чем у других млекопитающих. Крупнейшие изменения в эволюции, например переход к теплокровности, могут изменять скорость мутаций, а это, в свою очередь, вносит путаницу в оценки дат ветвления. Сейчас разрабатываются сложные методы, которые позволят учесть варьирующие скорости мутирования в разных линиях.
Еще один тревожный факт: период размножения предоставляет максимум возможностей для мутаций. Поэтому виды с коротким жизненным циклом, например дрозофилы, накапливают мутации быстрее, чем, например, слоны. Вот почему появилось предположение о том, что щелчки “молекулярных часов” соответствуют скорее поколениям, чем единицам реального времени. Однако когда молекулярные биологи изучили скорости мутирования, используя линии с хорошо сохранившейся палеонтологической летописью, они этого не обнаружили. Оказалось, “молекулярные часы” все-таки отсчитывают время скорее в годах, чем в поколениях.