Читаем Рассказ предка. Паломничество к истокам жизни полностью

Допустим, колбочка имеет пик в зеленой части спектра. Значит ли это, что такая клетка посылает сигналы в мозг лишь тогда, когда она “смотрит” на зеленый объект, например на траву или бильярдный стол? Безусловно, нет. Просто клетке необходимо больше красного света (в этом случае), чтобы выдавать импульсы той же интенсивности, как при заданном количестве зеленого света. Такая клетка будет одинаково реагировать как на яркий красный свет, так и на тусклый зеленый[19]. Нервная система может определить цвет объекта лишь путем сопоставления одновременно поступающих импульсов по меньшей мере от двух клеток, чувствительных к разным участкам спектра. Каждая клетка при этом “контролирует” другую. Если же клеток не две, а три, представление о цвете окажется еще полнее.

Цветное телевидение и компьютерные мониторы работают в трехцветной системе, потому что были разработаны для трихроматических глаз. В обычном мониторе каждый пиксель состоит из трех точек, расположенных настолько близко друг к другу, что глаз не может их различить. Каждая точка всегда светится одним цветом. Посмотрев на экран под достаточно большим увеличением, мы увидим одни и те же три цвета – обычно красный, зеленый и синий, хотя иногда могут использоваться и другие комбинации. Любой оттенок можно получить, регулируя интенсивность свечения трех основных цветов. Должно быть, черепах с их тетрахроматическим зрением наши телевизоры разочаровывают.

Сопоставляя интенсивность импульсов всего от трех типов колбочек, наш мозг может воспринимать огромный диапазон оттенков. Но большинство плацентарных млекопитающих обладает дихроматическим зрением: в их сетчатке колбочки двух типов. У колбочек одного типа пик восприимчивости в фиолетовой области спектра (в некоторых случаях – в ультрафиолетовой), у второго типа – где-то между зеленой и красной областями. У нас, животных с трихроматическим зрением, пик “коротковолновых” колбочек находится между фиолетовой и синей областями спектра. Такие колбочки называют синими… Другие два типа наших колбочек – так называемые зеленые и красные. Правда, даже у красных колбочек пик приходится скорее на желтоватую, чем на красную часть спектра. Но в целом кривая их чувствительности сдвинута в красную часть спектра. Так что, несмотря на то, что пик в желтой области, эти колбочки все равно генерируют сильный импульс в ответ на красный свет. Поэтому, если вычесть интенсивность импульса от зеленых колбочек из интенсивности импульса красных колбочек, мы получим особенно сильный сигнал в ответ на красный свет.

Кроме колбочек, в сетчатке еще есть палочки – светочувствительные клетки, которые отличаются от колбочек формой и особенно эффективны ночью. В цветовом зрении эти клетки не участвуют, и мы больше не будем о них говорить.

Химия и генетика цветового зрения довольно хорошо изучены. Главными молекулярными акторами здесь выступают опсины. Это молекулы белка, которые в колбочках и палочках выполняют функцию зрительных пигментов. Каждая молекула опсина связана с одной молекулой ретиналя – химического соединения, которое является производным витамина А [20]. Молекула ретиналя скручена в петлю, которая встраивается в молекулу опсина. При попадании фотона с подходящей длиной волны узел распрямляется. Это служит сигналом для клетки: она посылает нервный импульс, который говорит мозгу: “Вижу свет своего типа”. Тогда молекула опсина связывается с новой скрученной молекулой ретиналя, поступающей из внутриклеточных запасов.

Не все молекулы опсина одинаковы. Опсины, как и все белки, кодируются генами. Различия в ДНК приводят к образованию опсинов, чувствительных к разным цветам, и это служит генетической основой дихроматического и трихроматического зрения. А поскольку каждая клетка организма имеет полный набор генов, различия между красными и синими колбочками не в том, какие гены у них есть, а в том, какие гены работают. На этот счет есть правило: каждая колбочка включает лишь один тип генов.

Гены, кодирующие наши зеленый и красный опсины, очень похожи друг на друга и находятся на Х-хромосоме (половая хромосома, которая у женщин есть в двух копиях, у мужчин – в одной). Ген, отвечающий за образование синего опсина, немного от них отличается и находится не на половой хромосоме, а на одной из обычных хромосом, которые называют аутосомами (в нашем случае это седьмая хромосома). Наши зеленые и красные клетки явно образовались в результате недавней дупликации гена, который, в свою очередь, задолго до этого образовался в результате дупликации гена синего опсина. Тип зрения животного – дихроматический или трихроматический – зависит от того, сколько разных генов опсинов у него в геноме. Если в геноме животного есть, например, гены синего и зеленого опсинов, но отсутствует ген красного опсина, такое животное будет дихроматом.

Перейти на страницу:

Похожие книги

Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь
Происхождение видов путем естественного отбора, или Сохранение благоприятных рас в борьбе за жизнь

Этот труд Чарлза Дарвина – не только основа эволюционной биологии, но и дневник путешественника-натуралиста, побывавшего в Южной Америке, на Галапагосских островах и в Австралии еще в конце XIX века. Его научные и досужие наблюдения – это документ эпохи – эпохи в жизни людей, наземных улиток, утконосов, кенгуру, лавра и акаций. Автору, обладавшему интеллигентным юмором, удалось собрать замечательный «этнографический» материал о живой природе, рассказав об удивительных особенностях физиологии и поведения живых существ и передав слухи о занятных происшествиях, имевших место в их биографии.Книга для всех и на все времена.

Чарльз Роберт Дарвин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Образование и наука