Действительно, даже достовернейшие из всех наук – арифметика и геометрия – вводят нас в этом случае в заблуждение. Какой счетчик не думает, что числа не только являются абстракциями интеллекта от всех предметов, но также, что их нужно отличать от последних и в воображении? Какой геометр не примешивает к очевидности своего объекта противоречивые принципы, когда он рассуждает, что линии не имеют ширины, поверхности – глубины, составляя, однако, одни из других и не замечая того, что линия, которую он представляет производящей посредством движения поверхность, есть настоящее тело, а линия, не имеющая ширины, есть не что иное, как предел тела и т. д. Но чтобы не задерживаться слишком долго на этих наблюдениях, мы покороче изложим, каким образом должен быть, по нашему мнению, представляем наш объект, чтобы доказать, по возможности проще, все, что есть в этом отношении истинного в арифметике и геометрии.
Декарт намерен рассмотреть протяжение не как геометрическую абстракцию, а как такую конкретную характеристику, которая наглядно представлена в воображении. Цель такого рассмотрения – выявление неизвестного методом сравнения с известным. Для этого нужно учитывать пропорции. Декарт намерен рассмотреть в протяжении три свойства, позволяющие их выявлять: измерение, единица и фигура.
Следовательно, мы займемся здесь протяженным объектом, не рассматривая в нем ничего, кроме одного только протяжения, и умышленно воздерживаясь от употребления слова «величина», ибо есть настолько изощренные философы, что они устанавливают различие также и между величиной и протяжением. Мы предполагаем свести все эти вопросы к единственной задаче – к отысканию некоторого протяжения путем сравнения его с каким-либо другим, уже известным. Действительно, поскольку мы не ожидаем здесь познания каких-либо новых вещей, но желаем только сводить соотношения, как бы они ни были запутаны, к тому, чтобы приравнять неизвестное к какому-либо известному, то все различия отношений и в других вещах могут, конечно, также отыскиваться между двумя или многими протяжениями. И поэтому нам достаточно для нашей цели рассмотреть в самом протяжении те элементы, которые помогут нам изложить различия соотношений. Таких элементов насчитывается три: измерение, единица измерения и фигура.
Декарт использует геометрическую символику, однако подчеркивает, что применять ее можно не только в геометрическом, но и в физическом смысле. Например, измерение может обозначать не только длину и ширину, но и физические характеристики. Это оправдывает тот факт, что Декарт объясняет правила для руководства ума на геометрических примерах, так как, изучив их на простом и ясном материале, мы с полным правом можем применить их в других науках.
Под измерением мы разумеем не что иное, как способ и основание, по которым та или иная вещь считается измеримой, почему измерениями тела являются не только длина, ширина и глубина, но также и тяжесть, по которой тела взвешиваются, и скорость, измеряющая движение, и тому подобные бесчисленные измерения. Само деление на множество равных частей, будь оно реальным или только мысленным, есть собственно измерение, с помощью которого мы вычисляем вещи. Способ образования чисел является, собственно говоря, особым видом измерения, хотя здесь есть известная разница в значении этого слова. Действительно, если мы рассмотрим части по отношению к целому, то это будет вычисление, если же, наоборот, мы рассмотрим целое как разделенное на части, то мы его измерим. Например, мы измеряем века годами, днями, часами и секундами, но если мы будем считать секунды, часы, дни и годы, то мы сочтем века.