Читаем Разведка далеких планет полностью

Рис. 3.3. Телескопы Галилея, хранящиеся в Музее истории науки, рядом с галереей Уффици, Флоренция. Трубы двух телескопов привязаны шелковыми ленточками к музейной подставке (это не штатив, которым пользовался Галилей!). Разбитый объектив третьего телескопа вставлен в виньетку из слоновой кости.

Сферическая аберрация возникает потому, что у линзы со сферическими поверхностями разные радиальные зоны имеют различное фокусное расстояние. Поэтому лучи, прошедшие вблизи центра и вблизи края линзы, собираются в разных точках и нигде не дают резкого изображения. Хроматическая аберрация возникает из-за того, что стекло имеет разный коэффициент преломления для лучей разного цвета, из-за чего простая линза не может собрать все лучи в одну точку: если в лучах одного цвета изображение звезды сфокусировано в точку, то вокруг нее виден расплывчатый ободок, образованный лучами других цветов. Сам Галилей боролся с этими недостатками линз, закрывая их внешнюю часть диафрагмой. Например, на одном из сохранившихся его телескопов (рис. 3.3) объектив диаметром 5.1 см задиафрагмирован до 2,6 см, а окуляр диаметром 2,6 см – до 1.1 см. Второй телескоп на рис. 3.3 имеет объектив 3,7 см, задиафрагмированный до 1,6 см. Этот прием частично помогал: изображение становилось более четким, но его яркость значительно снижалась.

Рис. 3.4. Ян Гевелий у одного из своих длинных телескопов.

После Галилея многие работали над усовершенствованием телескопа. В 1611 г. Иоганн Кеплер теоретически обосновал новую конструкцию, в которой окуляром служит положительная линза. Такой телескоп дает перевернутое изображение, но имеет значительно большее поле зрения. Впервые телескоп системы Кеплера изготовил иезуит Христоф Шейнер в 1613 г. Вскоре среди астрономов кеплерова труба полностью вытеснила «голландскую» (галилееву), поскольку перевернутое изображение не доставляло им хлопот. Но для морских подзорных труб и биноклей голландская схема использовалась еще долго, вплоть до изобретения призменного бинокля.

Исследуя сферическую аберрацию, Кеплер теоретически обнаружил, что ее можно устранить, придав линзам форму гиперболоидов. В 1637 г. Рене Декарт предложил для телескопов делать линзы с гиперболическими поверхностями, но попытки изготовить их оказались безуспешными. Марен Мерсенн в 1636 г. развил идею создания телескопа из двух параболических зеркал, высказанную иезуитом Николло Цукки двадцатью годами ранее. Но и эту идею не удалось тогда осуществить из-за сложности изготовления параболических поверхностей. Первый телескоп с отражательными поверхностями – рефлектор – был создан лишь три десятилетия спустя. А тем временем линзовый телескоп – рефрактор – продолжал совершенствоваться.

Рис. 3.5. Крупнейший, 150-футовый телескоп Яна Гевелия (1645 г.).

В середине XVII в. стало ясно, что сферическая и хроматическая аберрация значительно ослабевает при увеличении фокусного расстояния объектива. Ян Гевелий из Гданьска и братья Христиан и Константин Гюйгенсы одними из первых стали строить длинные телескопы. Крупнейший телескоп Гевелия имел объектив диаметром 12 см с фокусным расстоянием 45 м и на сложной системе тросов и блоков подвешивался на 27-метровой мачте. Христиан Гюйгенс укреплял объектив на небольшой платформе, скользящей вверх и вниз по мачте, а окуляр – отдельно на небольшой подставке, которую можно было переносить в поисках фокуса. Такой телескоп называли «воздушным», поскольку он не имел трубы.

Рис. 3.6. Воздушный телескоп Гюйгенса. Отдельно показаны объектив и окуляр.

Длина телескопов Гюйгенса в 1686 г. достигала 210 футов (64 м), а диаметр объективов – 22 см. Правда, свои знаменитые астрономические открытия – кольца Сатурна и его крупнейший спутник Титан, полярные шапки Марса и его вращение, межзвездные туманности и др. – Гюйгенс открыл за 30 лет до этого с помощью скромного 12-футового телескопа с объективом 5 см.

Итак, в XVII–XVIII вв. пользовались длинными рефракторами с фокусными расстояниями в десятки метров. Это было очень неудобно.

Роберт Гук придумал, как укоротить телескоп с помощью нескольких плоских зеркал, но выяснилось, что сделать хорошее плоское зеркало не так-то легко, и от идеи отказались.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука