Читаем Разведка далеких планет полностью

Рис. 3.8. Вверху: рефрактор Дерптской обсерватории работы Фраунгофера. Весьма оригинальна система разгрузки трубы: две штанги с шарами препятствуют гнутию телескопа. Внизу: разрез здания обсерватории, сохранившегося без существенных изменений до наших дней.

К середине XIX в. все обсерватории мира стали пользоваться рефракторами, оказавшимися для астрометрических целей значительно удобнее рефлекторов с их быстро тускнеющими бронзовыми зеркалами. Да и проницающая способность рефракторов оказалась более высокой: в 1848 г. спутник Сатурна Гиперион позволили заметить только два телескопа – 24-дюймовый рефлектор Ласселла и 15-дюймовый рефрактор Бондов, в то время крупнейший в мире. Можно сказать, что в этот момент рефлекторы уступили свое первенство по «зоркости». Лишь отдельные энтузиасты продолжали строить крупные рефлекторы. Уже знакомый нам Уильям Парсонс (лорд Росс) построил несколько 91-сантиметровых ньютоновских рефлекторов, а в 1845 г. создал колоссальный 182-сантиметровый рефлектор «Парсонстаунский левиафан», с помощью которого открыл множество новых деталей в туманностях, в частности спиральную структуру некоторых из них, оказавшихся галактиками.

Перелом в судьбе телескопов-рефлекторов наступил в 1853 г., когда Юстус фон Либих предложил метод выделения металлического серебра из раствора нитрата серебра для наружного покрытия стекла тонкой отражающей пленкой. В 1856 г. немецкий физик Карл Август фон Штейнгейль и независимо от него французский физик Леон Фуко применили этот метод для изготовления астрономических зеркал. С этого момента почти без исключений зеркала телескопов делали из стекла, которое легче бронзы и проще в обработке. К тому же серебряная пленка лучше отражает свет, чем полированный спекулум. Когда слой серебра тускнеет, его просто смывают и наносят новый; металлическое же зеркало в этом случае необходимо заново полировать.

Рис. 3.9. Ахроматический двухлинзовый объектив. Пунктирные линии показывают ход лучей в том случае, если бы свет прошел только сквозь положительную линзу. Вторая, отрицательная линза обладает сильным обратным хроматизмом. Она удлиняет фокусное расстояние и сводит оба цвета в одном фокусе (0).

Развив метод Хэдли, Фуко предложил новый способ проверки сферической формы зеркала. Он освещал его через маленькое отверстие, помещенное чуть в стороне от центра кривизны сферы, и рассматривал изображение этого отверстия, образованное рядом с ним отраженными лучами. Это же делал 200 лет назад и Хэдли. Но Фуко рассматривал изображение не на экране, как Хэдли, а глазом, поместив перед ним пластинку с острым и ровным прямолинейным краем – «нож». Двигая ее, Фуко наблюдал, как изменяется освещенность поверхности зеркала, и по форме тени легко определял отклонение поверхности от идеальной сферы. Этот метод настолько прост и чувствителен, что «нож Фуко» до сих пор применяется при изготовлении зеркал.

Рис. 3.10. Крупнейший в мире Йерксский рефрактор (1897 г.) диаметром 40 дюймов (102 см), установленный чуть севернее г. Чикаго, на берегу небольшого озера Женева.

В то время как технология изготовления рефлекторов во второй половине XIX в. быстро совершенствовалась, эволюция рефрактора практически остановилась. Современные рефракторы мало изменились с эпохи Фраунгофера. Правда, улучшились качество и ассортимент оптического стекла, но полностью победить хроматическую аберрацию все равно не удалось. Ее сводят к минимуму лишь в небольшой области спектра: в желто-зеленой, если телескоп предназначен для визуальных наблюдений, и в голубой, если для фотографических. Оба крупнейших в мире рефрактора, Ликский и Йерксский, – визуальные, с объективами диаметром около 1 м. Оба были построены в конце XIX в. и установлены на экваториальных монтировках немецкого типа, какие делал Фраунгофер. Заготовки для линз их объективов были отлиты во Франции, а сами объективы изготовила знаменитая американская фирма «Алван Кларк и сыновья».

Рис. 3.11. Ликский рефрактор (1888 г.) диаметром 36 дюймов (91 см), установленный на горе Гамильтон в Калифорнии.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука