Читаем Разведка далеких планет полностью

Около 1663 г. Исаак Ньютон начал свои знаменитые опыты по отражению и преломлению света, в ходе которых он ясно понял различие между сферической и хроматической аберрацией. Однако он ошибочно полагал, что все вещества обладают одинаковой силой преломления, из чего заключил, что невозможно сделать линзовую систему, свободную от хроматической аберрации. (На самом деле – можно, если использовать линзы из разных сортов стекла.) Сделав такой вывод, Ньютон обратился к зеркальным системам, поскольку лучи любого цвета отражаются от зеркала одинаково. Вообще говоря, зеркальные телескопы предлагались и до Ньютона. Я уже упоминал об идеях Цукки и Мерсенна. Около 1664 г. Джеймс Грегори предложил телескоп с главным параболическим зеркалом и вспомогательным эллиптическим. Эта схема была свободна не только от хроматической, но и от сферической аберрации. Однако изготовить столь сложные зеркальные поверхности Грегори не смог.

Рис. 3.7. Оптические схемы телескопов-рефлекторов. 1 – главное зеркало, 2 – вторичное зеркало, Ок — окуляр.

Ньютон разработал методы шлифовки и полировки сложных зеркал. В 1668 г. он построил первый телескоп-рефлектор длиной всего 16 см с параболическим зеркалом диаметром 3,1 см. Упростив схему Грегори, он с помощью маленького плоского зеркала вывел фокус главного зеркала наружу сквозь отверстие в трубе телескопа. Такая конструкция тоже свободна от сферической аберрации. Ньютон делал зеркала из оптической бронзы или спекулума – сплава меди с оловом, имевшего блеск, сравнимый с блеском серебра. К сожалению, этот сплав из-за присутствия меди быстро тускнеет и требует переполировки. Но его использовали для астрономических зеркал вплоть до 1850 г., когда изобрели метод серебрения стекла.

Таблица 3.1

Открытия спутников планет в XVII–XIX вв.

Рефлектор иной системы, также свободной от сферической аберрации, предложил в 1672 г. француз Лоран Кассегрен (Laurent Cassegrain, 1629–1693), о котором мало что известно. И хотя Ньютон резко критиковал эту конструкцию, она широко используется до сих пор. Главное зеркало в ней параболическое, а вторичное – выпуклое гиперболическое. Свет выходит сквозь центральное отверстие в главном зеркале.

Для XVIII в. характерен быстрый прогресс в изготовлении рефлекторов. Английский оптик Джон Хэдли (Гадлей, 1682–1744) первым использовал оптический метод контроля формы зеркала. Шотландский оптик и астроном Джеймс Шорт (1710–1768) построил множество прекрасных телескопов по схеме Грегори. А Вильям Гершель с помощниками создал в 1789 г. крупнейший по тем временам телескоп с зеркалом диаметром 126 см и фокусным расстоянием 12 м; с этим «Великим 40-футовым» мы уже познакомились в главе 2. Заметим, что в нем впервые было реализовано наблюдение в главном фокусе, смещенном к краю апертуры (система Ломоносова – Гершеля). После изобретения фотографии наблюдение в главном фокусе стало нормой.

Но и до появления фотопластинки большие рефлекторы уверенно демонстрировали свое главное преимущество – высокую проницающую способность, то есть позволяли замечать тусклые объекты. Вильям Гершель с помощью своего любимого «Большого 20-футового» диаметром 18 дюймов в 1787 г. открыл спутники Урана – Титанию и Оберон, имеющие блеск около 14m. До этого астрономы замечали спутники с блеском не слабее 11m, и вдруг – скачок сразу на три звездные величины (табл. 3.1). Результат Гершеля немного улучшил другой любитель астрономии – английский пивовар Уильям Ласселл (1799–1880), построивший близ Ливерпуля рефлектор диаметром 24 дюйма. И это было вполне закономерно: используя зеркало почти вдвое большей площади, он и продвинулся к вдвое более тусклым объектам. При этом Ласселл повторил рекорды Галилея, Кассини и Гершеля – открыл 4 спутника (он обнаружил Гиперион независимо от американских астрономов отца и сына Бондов). Любопытно, что вслед за Гершелем и лордом Россом Ласселл в 1855 г. тоже построил огромный 48-дюймовый рефлектор. Понимая, что Англия – не лучшее место для астрономических наблюдений, Ласселл установил свой гигантский инструмент в прекрасном районе – на острове Мальта. Однако, как и его предшественники, он не обнаружил новых спутников. Для этого требовался новый технологический рывок.

Фактически прорыв Гершеля не был превзойден в течение столетия. Лишь в самом конце XIX в. американский астроном Уильям Пикеринг смог продвинуться еще на две звездных величины, обнаружив спутник Сатурна Фебу, но дело тут было не в качестве телескопа: Феба стала первым спутником, открытым с помощью фотографии. Вообще говоря, этот факт обескураживает: фотоэмульсия обладает неоспоримым преимуществом перед нашим зрением: она может долго накапливать свет тусклых звезд. Почему же в течение полувека развития фотографии глаз выдерживал конкуренцию с фотокамерой?

<p>Глаз и телескоп</p>
Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука