Подробный анализ ряда случаев резкого увеличения хромосомной изменчивости внутри популяций позволил подтвердить эту зависимость. В Италии высокая лабильность кариотипа домовых мышей
Вспомним, что кариотип человека (2n=46) отличается хромосомными перестройками от кариотипа его ближайших родичей — двух видов шимпанзе и гориллы (у них 2n=48). Есть все основания полагать, что 2/2=48 было исходным числом хромосом, общим для предков человекообразных, австралопитеков и человека. В крайне сложном и многофакторном процессе антропогенеза не последнюю роль должны были играть хромосомные мутации, обеспечившие репродуктивную изоляцию предков человека от их ближайших родичей, сохранивших в карйотипе 48 хромосом. Исходя из приведенных в начале этой книги данных о находках ранних ископаемых гоминид, можно предположить, что перестройки, обеспечившие переход от 48-хромосомного к 46-хромосомному кариотипу происходили в сейсмически активной области Великого Африканского рифта.
Напомним, что наиболее высокие темпы видообразования (о роли хромосомных мутаций в этом процессе пока нет данных) для замкнутых водоемов отмечены у фауны озер Байкал[709], Танганьика и расположенного на Балканах озера Охрид[710]. Байкал и Танганьика лежат в сейсмически активных рифтовых зонах, Охрид — в высокосейсмичной Балканской зоне.
Каковы же причины высокой изменчивости хромосом в сейсмических районах? С тектоническими разломами связан целый букет мутагенных факторов: γ-излучение, высокая концентрация радоновых вод, солей тяжелых металлов и т. п. Несомненно также, что в сейсмических районах чаще, чем в несейсмических, происходит изоляция популяций или их частей — за счет обвалов, селевых потоков, изменения русел рек, что создает особо благоприятные условия для фиксации новых хромосомных мутаций и ускоряет темпы видообразования.
Разумеется, сейсмичность — не единственный экзогенный фактор, ведущий к повышенной изменчивости хромосом. Выше уже говорилось о роли вирусных инфекций в возникновении хромосомных повреждений. После вирусных пандемий численность популяции уменьшается и она вступает в новый экологический цикл, отягощенная значительным числом разнообразных хромосомных мутаций[711].
Существенно отметить, что хромосомные перестройки робертсоновского типа (2
Другой важной формой преобразования хромосом в эволюции являются перестройки временно неактивных, так называемых гетерохроматиновых участков хромосом. Выпадения (делеции) и удвоения (дупликации) гетерохроматиновых участков играют важную роль в хромосомной эволюции. Многие случаи внутрипопуляционного хромосомного полиморфизма у млекопитающих[712] связаны именно с изменчивостью гетерохроматиновых районов. Как уже говорилось, граница между гетерохроматиновым блоком и соседствующим эухроматиновым участком является той границей, по которой проходят разрывы хромосом[713]. На сусликах показана корреляция ряда видов, расположенных по степени уменьшения количества гетерохроматина, с рядом, расположенным по степени уменьшения фракции так называемых промежуточных повторов ДНК[714].
Весьма вероятно, что у млекопитающих с высоким темпами хромосомной эволюции дальнейшая генетическая дивергенция идет в большей степени за счет дивергенции ограниченного числа регуляторных генов, а не за счет накопления множества мутаций структурных генов.
Многообразие путей и форм видообразования