Читаем Развитие жизни на Земле полностью

Для объяснения резких изменений состава и общего облика фауны и флоры в определенные моменты истории Земли, одним из которых и является нижнекембрийский рубеж, некоторые авторы (например, немецкий палеонтолог О. Шиндевольф) привлекают «взрыв мутаций», т. е. значительное возрастание по сравнению с обычным средним уровнем частоты и размаха изменений аппарата наследственности, вызванное какими-то внешними факторами и затронувшее одновременно все (или почти все) виды организмов. Подавляющее большинство мутаций снижает жизнеспособность мутантных особей, чем пытаются объяснить массовое вымирание видов прежней фауны и флоры; общее усиление мутационного процесса, по мысли Шиндевольфа, приводит к возникновению и быстрому распространению новых форм. При этом сразу возникают новые типы организации путем крупных мутаций, так сказать, скачкообразно. В качестве причины такого «мутационного взрыва» Шиндевольф привлекает повышение уровня жесткой космической радиации в результате вспышки Сверхновой звезды на достаточно близком расстоянии от Солнца.

К сожалению, эта концепция не может объяснить ни одного конкретного случая изменений фауны и флоры: почему вымерли одни группы организмов, а выжили и преуспели другие, прежде сосуществовавшие с первыми?

В сущности, концепция «мутационного взрыва» просто подменяет анализ конкретных ситуаций постулированием универсальной причины для объяснения любого крупномасштабного эволюционного изменения. Совершенно несостоятельно привлечение крупных мутаций для объяснения значительных и быстрых преобразований организмов. В действительности основой эволюционного процесса являются малые мутации, и эволюционные перестройки большого масштаба складываются под контролем естественного отбора из серий малых мутаций. Крупные мутации приводят к резкому нарушению функционирования аппарата наследственности, к разладу сложнейших, тонко скоординированных систем морфогенеза и, в итоге, к гибели мутантного организма. Далее, расчеты ряда авторов показали, что вспышки Сверхновых звезд не могут вызвать такого повышения радиации на поверхности Земли, которое имело бы предполагавшийся Шиндевольфом мутагенный эффект.

Вообще всегда кажется более предпочтительным искать объяснения событиям, происходящим на Земле, по возможности не прибегая к таким гипотезам, которые постулируют универсальное влияние некоего космического фактора, никак не опосредованное конкретными земными условиями.

В этом отношении от многих других концепций выгодно отличается гипотеза Л. Беркнера и Л. Маршалла (1965, 1966), объясняющая многие важнейшие события в ходе докембрийской и послекембрийской эволюции, так же как и на рубеже криптозоя и фанерозоя, опираясь на закономерные изменения условий в среде обитания древних организмов. В центре внимания гипотезы Л. Беркнера и Л. Маршалла стоит анализ зависимости развития жизни на Земле от изменений содержания кислорода в земной атмосфере[6].

В современной атмосфере Земли содержится около 21 % кислорода, что соответствует его парциальному давлению 159 мм рт. ст. Нам, современным обитателям Земли, это представляется совершенно естественным: ведь свободный кислород атмосферы необходим для подавляющего большинства организмов как окислитель в процессах дыхания. Первичноводные животные (например, рыбы) дышат кислородом, растворенным в воде, но этот последний образует с атмосферным кислородом единую систему: избытки кислорода, выделяющегося в воде (в результате фотосинтеза водных растений), поступают в атмосферу, а кислород атмосферы растворяется в поверхностном слое воды, по тем или другим причинам обедненной растворенным кислородом.

Однако кислородная атмосфера, столь богатая этим элементом, среди всех планет солнечной системы присуща только Земле. Это не случайно. Высокая химическая активность кислорода приводит к тому, что в условиях планет кислород в свободном состоянии долго существовать не может. Участвуя в различных химических реакциях, он оказывается связанным в виде оксидов и других соединений. Обилие кислорода в атмосфере современной Земли — результат фотосинтеза, осуществляемого в течение 3 млрд. лет зелеными растениями:

6СО2 + 6Н2О → С6Н12О6 + 6О2 − 2,62 кДж энергия солнечного света

Первичная атмосфера Земли, существовавшая во времена зарождения жизни (3,5–4 млрд. лет назад), имела восстановительный характер и состояла, вероятно, из водорода, азота, паров воды, углекислого газа, аммиака, метана, аргона и небольших количеств других газов, в том числе и кислорода. Количество свободного кислорода в первичной атмосфере не могло превышать 0,001 от современного его содержания (это небольшое количество кислорода выделялось в результате фотодиссоциации воды ультрафиолетовыми лучами; кислород быстро входил в различные химические реакции и вновь оказывался в химически связанном состоянии).

Перейти на страницу:

Похожие книги