Читаем Развитие жизни на Земле полностью

Зарождение жизни произошло в бескислородной среде, и кислород в силу своей высокой окислительной способности первоначально был ядовит для протоорганизмов из-за отсутствия у них соответствующих защитных биохимических систем. Вероятно, протоорганизмы по способу питания являлись гетеротрофами, использовавшими в пищу различные органические соединения абиогенного происхождения, которыми, по мнению большинства авторов, были обогащены водоемы раннего археозоя (состояние «первичного бульона», по А. И. Опарину) и на базе которых возникла и сама жизнь. Для освобождения энергии, необходимой в жизненных процессах, использовалась анаэробная диссимиляция (брожение):

С6Н12О6 → 2СН3СН2ОН + 2СО2 + 0,209 кДж/моль

С появлением фотосинтеза (первыми фотосинтезирующими организмами были сине-зеленые водоросли) в атмосферу стал выделяться кислород.

В условиях бескислородной атмосферы распространение жизни было гораздо более ограниченным, чем ныне. Дело в том, что организмы не имеют никакой защиты от гибельной для них жесткой ультрафиолетовой части излучения Солнца (с длиной волны менее 250 нм). В современной атмосфере жесткая ультрафиолетовая радиация поглощается так называемым озоновым экраном — слоем озона О3, образующегося на высоте около 50 км из кислорода О2 под действием солнечного излучения и распределяющегося в основном в 15–60 км от земной поверхности. Озоновый экран надежно защищает живые организмы, которые могут существовать как в водоемах, так и на поверхности суши и в нижних слоях атмосферы. В бескислородной атмосфере раннего докембрия озоновый экран отсутствовал и жизнь могла развиваться только под защитой слоя воды толщиной около 10 м. Поверхностные слои водоемов, получающие наибольшее количество энергии солнечного излучения, были недоступны для организмов. Совершенно безжизненны были и материки криптозоя.

Однако фотосинтез, осуществлявшийся в озерах, морях и океанах планеты сине-зелеными водорослями (а позднее и различными группами эукариотических водорослей), в течение 2 млрд. лет медленно, но неуклонно повышал содержание свободного кислорода в атмосфере. Когда содержание кислорода достигло 0,01 от современного (так называемая точка Пастера, соответствующая парциальному давлению кислорода 1,59 мм рт. ст.), у организмов впервые появилась возможность использовать для удовлетворения своих энергетических потребностей аэробную диссимиляцию; другими словами, после достижения точки Пастера стало возможно дыхание, которое энергетически выгоднее брожения почти в 14 раз:

С6Н12О6 + 6О2 → 6СО2 + 6Н2О + 2,88 кДж/моль

(Вспомним, что при брожении освобождается всего лишь 0,209 кДж/моль.) Это был важнейший переломный момент в развитии жизни.

Среди современных организмов так называемые факультативные аэробы, каковыми являются многие бактерии и некоторые дрожжевые грибы, при уменьшении содержания кислорода ниже точки Пастера используют брожение, при поднятии содержания кислорода выше указанной точки — дыхание (эффект Пастера).

Переход к аэробной диссимиляции в эволюции древних организмов произошел, разумеется, не сразу. Для этого необходимо развитие соответствующих ферментативных систем, но линии, приобретшие способность к дыханию, получили огромный энергетический выигрыш и в результате возможность резко интенсифицировать метаболизм и все жизненные процессы. Это явилось предпосылкой к дальнейшей прогрессивной эволюции и, вероятно, способствовало ускорению эволюционного процесса.

Но достижение пастеровской точки в развитии атмосферы Земли ознаменовалось не только появлением возможности аэробной диссимиляции организмов. При содержании кислорода в атмосфере в количестве 0,01 от современного формирующийся озоновый экран может защитить от жесткой ультрафиолетовой радиации уже и верхние слои воды в водоемах (требуется «помощь» слоя воды толщиной примерно 1 м). Это, во-первых, позволяет организмам подниматься в поверхностные слои водоемов, наиболее богатые солнечной энергией; в результате резко усиливается эффективность фотосинтеза, увеличиваются биопродукция (синтез растениями органических веществ) и выделение свободного кислорода. Во-вторых, чрезвычайно расширяется арена жизни, малые глубины водоемов представляют огромное разнообразие условий по сравнению со средними и большими глубинами. Освоение этого разнообразия условий в богатой энергией среде обитания неминуемо должно привести к резкому повышению разнообразия форм жизни, подлинному взрыву формообразования.

Перейти на страницу:

Похожие книги