Как нам представляется, платонизм теории множеств, вместе с необходимыми неоплатоническими модификациями, допустимо обрисовывать по следующим пересекающимся и зависимым направлениям: ипостасийный характер числа как универсальной характеристики упорядоченности произвольного множества; реальность актуальной (завершенной) бесконечности в противовес бесконечности потенциальной (незавершенной или, вернее, незавершаемой); иерархичность актуальных бесконечностей различных типов; диалектическое прочтение отношений «элемента» и «системы», «части» и «целого». Соответствующие темы так или иначе намечены или развиты в ряде лосевских работ 1920-х годов, особо же выделяются здесь «Античный космос и современная наука», «Музыка как предмет логики», «Философия имени». Есть также данные, что в архиве Лосева среди бумаг 1930 — 40-х годов прослеживается дальнейшая разработка тем «диалектики математики». Впредь до момента, когда подводная часть лосевского айсберга станет обозримой благодаря подвигам отечественного книгопечатания, было бы наивно претендовать на полную обрисовку (и уж тем более полное развертывание) намеченных здесь сюжетов. Поэтому мы остановимся далее на некоторой детализации только одной темы — темы актуально бесконечного.
Начать лучше с картинки. Вполне законченный и скорее отталкивающий — а потому и отправляющий к идеям Кантора — образ потенциальной бесконечности дан в 17-м эпизоде «Улисса» Д. Джойса, где читатель вместе с Леопольдом Блумом размышляет о
«существовании числа, вычисленного с относительной степенью точности до такой величины и со столькими знаками <…> что, по получении результата, потребовалось бы 33 тома мелкой печати, по 1000 страниц в каждом, несметное множество дестей и стоп индийской бумаги, чтобы там поместилась вся эта сага цифр <…>, причем ядро туманности каждого знака в каждом ряду таит потенциальную возможность возведения в любую степень любой из его степеней, до наивысшего кинетического развития» 6
.Кантор выступил против этого, даже в карикатурном виде подавляюще-внушительного «наивысшего кинетического развития», по собственному признанию, почти вопреки своим убеждениям и вместе с тем сознательно порывая с господствующей догмой. Фактически в одиночку он не просто ввел «сверхконечное» в математику, но и свершил значительный поступок во имя исторической истины. Своим, если так можно выразиться, независимым экспериментом он подтвердил основательность старинного течения мысли — неоплатонической диалектики числа, для которой понятие актуальной бесконечности носило фундаментальный характер. Конечно же, мимо столь примечательной фигуры Лосев пройти не мог: «случай Кантора» буквально добавлял еще одну важную главу в «Античном космосе и современной науке».