Переходим к «актуально бесконечному среднему». О нем молчат не только современная математика и философия математики, молчит не только Кантор, этот тип бесконечности не существует для позитивистской 13
мысли в целом. Совсем не таково отношение к актуальной бесконечности в традиции Платона, Плотина и Прокла. И, надо добавить, Лосева. Мы избавлены здесь от необходимости цитировать античных авторов, ибо лосевская точка зрения, что называется, представительна. А сводится она категорически к одному: актуально бесконечна любая (любая: «большая», «средняя», «малая») категория, с которой имеет дело человеческая мысль. Тогда излюбленные для Лосева примеры «на пальцах», в которых фигурируют самые обыкновенные числа натурального ряда и простейшие геометрические точки, отправляют нас как бы к эпицентру умопостигаемого бытия — и здесь смыкаются все масштабы. Всякая, читаем, «единица является не чем иным, как бесконечностью», и «всякая точка возможна только в том случае, когда она мыслится на общем и уже внеточечном фоне <…>, она немыслима вне бесконечности», и вообще, категоричен Лосев, само «мышление, устанавливающее хотя бы два каких-нибудь различных момента (а без процесса различения мышление вообще невозможно), осуществимо лишь как непрерывное пользование принципом бесконечности» 14. Об актуальной бесконечности, данной «средствамиОбратимся с этой целью к давней работе Лосева «Критика платонизма у Аристотеля», а через ее посредничество — к двум заключительным книгам «Метафизики». Здесь актуальная бесконечность рассматривается сквозь призму отношений идеального и чувственного, а классическая проблема «предела» и «беспредельного» специфицируется вопросом о соотношении «идеи» и «числа» или, точнее, о соотношении «идеальных» чисел и чисел «арифметических», о возможности либо невозможности их совместного полагания. Главный упрек Платоновой философии со стороны Аристотеля хорошо известен — это упрек в противоречии. Аристотель утверждает:
«следует, по-видимому, считать невозможным, чтобы отдельно друг от друга существовали сущность и то, сущность чего она есть; как могут поэтому идеи, если они сущности вещей, существовать отдельно от них?» (
Отвечая за Платона, Лосев находит данное противоречие, неразрешимое для формалистики Аристотеля, вполне диалектически снимаемым так, что «идеальное» число одновременно и присутствует в «арифметическом» числе, и существует вне его самостоятельно 17
. Как нам представляется, проводимое антиномико-синтетическое единение «числа» и «идеи числа» удобно описать с использованием особого признака, введенного еще Аристотелем. Признак этот — «счислимость» или «счетность», здесь это синонимы. У Лосева для него находится развернутое пояснение, важное и для наших целей:«Если мы попытаемся схватить самое общее отличие числа от идеи, то это будет та его особенность, что оно есть некая
Говоря же об «идеальных» числах, замечает Лосев,
«мы тут выставляем такие числа, в которые входит некое