Читаем Разыскания о жизни и творчестве А.Ф. Лосева полностью

Начнем с отношений элемент — множество, хотя и о паре часть — целое забыть, пусть даже временно, не придется. На то есть причины, коренящиеся в истории (уже не отменимой) теории множеств. Как уже было сказано, в исходном понимании множества по Кантору заложена некая антиномическая слитость; однако на практике эта слитость была подорвана. Именно, понятие множества стало употребляться в собирательном смысле (как «единство»), когда речь заходила о части и целом или подмножестве и множестве, оно же стало употребляться в разделительном смысле (как собственно «множество»), когда речь заходила об элементах множества, точнее, о вопросе принадлежности их к множеству 16. В этом разрыве есть вина либо, на чей-то вкус, заслуга самого Кантора, любившего, с одной стороны, подчеркивать «организменность» объектов своей теории, т. е. подчиненность элементов интегральному целому, но, с другой стороны, требовавшего от всякого элемента множества, чтобы тот был «хорошо определен» или «хорошо различим». Можно сказать и о недостаточной готовности математиков, с Кантора же и начиная, к тяготам нелегкого (но и необходимого, во всяком случае в теории множеств) обращения с антиномиями… Но здесь пришлось бы уходить далеко в глубины (дебри) оснований математики, чего нельзя делать теперь еще и без учета громадной критической работы, проделанной в свое время Лосевым 17. Поэтому нам остается просто констатировать, что в теории множеств существует два конкурирующих полюса, к которым тяготеют те или иные конструкты теории, — полюс «первичности элемента» и полюс «первичности целого». Существует один из таких конструктов, который как бы застыл посредине между названными полюсами и своим существованием наглядно демонстрирует теоретико-множественную специфику. Это — одноэлементное множество, т. е. такое множество M = {m}, которое состоит точно из одного элемента m и рассматривается как сущность, неравная этому элементу, иными словами, здесь ложно утверждение {m} = m. Так встретились две различные реальности, реальность элемента и реальность множества, причем их принципиальная разница нисколько не утрачивается от того, что элемент и одноэлементное множество часто могут носить одно и то же наименование. Как видим, в теории множеств (и это она — наивная?!) заложены возможности для тончайших различений, казалось бы, чрезвычайно близких объектов, но на самом деле объектов разной «породы». Здесь невольно напрашиваются параллели к имяславской формуле, утверждающей нечто важное об одном уникальном «одноэлементном множестве»: «Имя Божие есть Бог, но Сам Бог не есть Имя Божие».

И укажем еще одну параллель, ненадолго покинув область «наивной» теории множеств. К этому подталкивает присутствие связки «есть» в только что приведенной формуле. Данная связка занимает ключевое место в интересной логической системе польского математика Станислава Лесьневского, — она нередко упоминается (но что хорошо известна, не скажешь) под названием мереологии. В рамках мереологии связка «есть» фактически заменяет понятие принадлежности элемента множеству, а сами множества понимаются не в разделительном, а в собирательном смысле. Кроме того, тут вводится жесткое ограничение на содержание утверждений со связкой (она употребляется только для непустых единичных имен объектов) и при этом условии специально рассматриваются отношения целого и части. В итоге же мереология, по мнению ряда исследователей, выступает не как улучшенный вариант теории множеств, но как ее мощный конкурент 18. Судя по всему, эта до сих пор мало изученная и чрезвычайно утонченная математическая теория представляет большую перспективу для новых философских прочтений, причем не в последнюю очередь — прочтений феноменологических и в особенности прочтений с точки зрения имяславия. Но поскольку московские имяславцы 20-х годов не были знакомы с изысканиями Лесьневского, мы можем коснуться этой темы разве что в порядке резервирования на будущее.

Перейти на страницу:

Похожие книги