В канторовской теории содержится бесспорно первоосновное понятие, с которого мы обязаны начать. По-русски его принято – и не только теперь, но уже издавна – называть множеством
, а у Кантора оно выражалось двумя равноправными терминами: Menge (основное словарное значение как раз «множество») и Mannigfaltigkeit («многообразие»). Сразу скажем, что и на русском и на немецком языках эти названия не вполне удачны. Все они или искажают, или не полностью передают содержание интересующего нас понятия, в чем нетрудно убедиться, воспользовавшись исходным определением самого Кантора. Наиболее известная формулировка такова:«Под „множеством“ (Menge
) мы понимаем соединение в некое целое M определенных хорошо различимых предметов m нашего созерцания или нашего мышления (которые будут называться „элементами“ множества M)» 4.Как видим, говорить о Menge
только как о «множестве» мало, ибо еще и прежде всего Menge является «единством», Menge в понимании Кантора – это «единство-множество». Не случайно именно на данную, отчетливо диалектическую примету новомодной математической конструкции обратили свое внимание такие авторы глубоких философских интерпретаций теории множеств, как Флоренский и Лосев. Сейчас, правда, канторовскую теорию принято называть «наивной». Это вроде бы вполне справедливо после тех сложнейших изощрений и мучительных поисков, что выпали на послеканторовскую историю разработки оснований математики. Однако оставлять в оценке теории множеств лишь снисходительный оттенок было бы неверно, – гениальная интуиция и чистосердечная наивность на деле счастливо дополнили здесь друг друга.Флоренскому выпало едва ли не с нуля излагать канторовские результаты для широкой отечественной публики, и ему обойти проблему содержательной стороны Mengenlehre
было попросту невозможно. Во всяком случае, в статье 1904 года «О символах бесконечности» он предпочел называть Menge «группой», тем самым избегая, во-первых, филологически точного и одновременно философски ошибочного буквального перевода и рискуя навлечь на себя, во-вторых, справедливые упреки математиков, ибо термин «группа» был уже занят для обозначения известной конструкции из сопредельной области математики (теория групп в алгебре). Он предпочел использовать этот термин не в специально-математическом смысле, а скорее в обиходно-бытовом понимании, еще только оснастив его характерной теоретико-множественной синтетичностью. Так подчеркивалось то, о чем мы уже заговорили выше, вчитываясь в Канторово определение, – что не «множество» только и не «единство» только есть Menge, но – «группа», но «всякий результат синтеза некоторой множественности в единство актом духа» 5.