что стало знаменитым примером как в философской, так и в логической литературе. Теперь, если мы принимаем высказывание (I) как обладающее истинностной оценкой (если оно не имеет истинностной оценки, то находится за пределами теории Тарского), то согласно упомянутому принципу следует, что
(i) “(I) ложно” является истинным, если и только если (I) является ложным,
и затем
(ii) “(I) ложно” является истинным, если и только если “(I) ложно” является ложным
– что является противоречием!
На самом деле до этого момента противоречие не возникало. Мы предположили, что “(I) ложно” обладает истинностной оценкой, и теперь это предположение опровергнуто. Мы не можем непротиворечиво утверждать, что (I) или истинно или ложно. Но почему мы должны
Действительно это так. Однако теперь перед нами встает другой парадокс – парадокс, который Чарльз Парсонс назвал парадоксом Строгого Лжеца. Он имеет форму:
(II) Высказывание (II) или ложно или не имеет истинностной оценки. Высказывание (II) является парадоксальным, потому что если мы пытаемся избежать предыдущей аргументации отрицанием наличия у (II) истинностной оценки, т. е. утверждаем, что (II) не имеет истинностной оценки, то с очевидностью следует, что
(II) или ложно или не имеет истинностной оценки
– и высказывание (II) представляет собой высказывание, которое мы сами только что сделали! Поэтому мы должны согласиться с тем, что (II) истинно, что подразумевает, что мы сами себе противоречим.
Тарский считал – и то является ортодоксальной точкой зрения среди логиков вплоть до сегодняшнего дня, – что в правильно построенном языке мы можем избежать таких парадоксов, оставив идею, что существует всеобщее и единое понятие истины, т. е. оставив идею, что “есть истинно” представляет собой неизменный предикат, независимый от языка. Более того, он считал, что если я говорю о высказывании на языке
Само-ссылка не устраняется таким образом. Могут существовать высказывания типа:
(III) Высказывание (III) не-истинно в
но это высказывание будет принадлежать не
Остается определить, достиг ли Тарский успеха или просто перевел антиномию из формального языка в неформальный, используемый им самим при объяснении значимости его формальных работ. Учитывая это, я повторю вопрос:
Теория Тарского вводит “иерархию языков”. Существует язык объектов (им может быть любой язык, свободный от таких “семантических” понятий, как референция и истина); существует мета-язык, мета-мета-язык и т. д. Для каждого конечного числа и существует мета-язык порядка