Подобно тому, как человек использует свой мозг, чтобы учиться на новой информации, собранной органами чувств, ИИ учится на информации, передаваемой ему, например, в виде изображения или правил игры. Данная информация не только обрабатывается в соответствии с тем, как он запрограммирован, но и меняет сам алгоритм, при помощи которого ее обрабатывают. Процесс, при котором ИИ запрограммирован на автоматическое изменение собственного алгоритма, называется машинным обучением. Например, для идентификации кошки люди принимают во внимание форму и физические характеристики и сверяют это со знаниями о том, кто такая кошка, основываясь на воспоминаниях и опыте. Обучение человека естественным образом включает в себя построение абстрактных представлений, т. е. человек может распознать кошку, даже если видит только задние лапы и хвост или видит рисунок с кругом, обозначающим голову, и двумя треугольниками, изображающими уши. Для того чтобы ИИ мог идентифицировать кошку, в систему нужно внести миллионы изображений кошек и обучить ее распознавать определенные группы пикселей – наименьших единиц изображения, которые создают форму кошки. Впервые такое обучение ИИ было проведено компанией Google в 2012 г. с использованием технологии, известной как Deep Learning, в целях построить программу, которая может распознавать изображения с кошками. В программе изначально не задавались правила, согласно которым у кошек четыре лапы, хвост, два уха и т. д., но, поскольку изображения на обучающих данных были помечены как содержащие или не содержащие кошек, программа смогла самостоятельно создать визуальную концепцию кошки. Когда программе предоставлялось новое изображение, она с высокой точность была способна пометить его как «содержащий кошку» или нет. Искусственный интеллект Google получил информацию из изображений, научился идентифицировать кошек, а затем мог применять правила для решения вопроса о том, какие новые изображения содержат рисунок кошки. Несмотря на то, что в отличие от мозга человека ИИ на самом деле не знает, кто такая кошка, и не понимает этого, ему удалось создать абстрактное представление о том, что мы называем кошкой или, если точнее, «кошкой на изображении».
Существуют разнообразные методы машинного обучения: глубокое обучение с использованием нейронных сетей, обучение с подкреплением, обучение на основе статистических принципов. Многие программы ИИ применяются для анализа и обработки изображений или речи либо извлечения информации из них. Глубокое обучение зачастую необходимо для прогнозов, таких как медицинские диагнозы или возможное мошенничество с кредитными картами.
В первые 20 лет GOFAI принес больший успех, что привело к значительному государственному финансированию. В реальных же условиях GOFAI не дал значимых результатов. Методология использования искусственных нейронных сетей не прошла проверку прикладными задачами и в 1970-х гг. финансирование исследований прекратилось, их количество уменьшилось, а сообщество ИИ сократилось. Через 10 лет, когда были усовершенствованы системы GOFAI и нейронные сети, решение задач, считавшихся ранее неразрешимыми, стало достижимым, и область ИИ снова стала казаться многообещающей. Однако надежды вновь не оправдались, и к 1990 г. количество исследований ИИ снова сократилось. Успех к рассматриваемой технологии пришел в начале 2000-х гг., что было обусловлено рядом значимых факторов:
– прогрессом методологии Deep Learning, модели решения задач, вдохновленной биологическими свойствами нейронных сетей;
– возможностью использования огромных объемов данных, ставших доступным в настоящее время;
– возросшей вычислительной мощностью процессоров;
– возможность горизонтального наращивания мощности вычислительных комплексов.
Обладая большими массивами данных, современные нейронные сети ИИ зачастую превосходят человека в решении многих задач, например в распознавании образов, моделировании, играх. Такая эффективность ранее была недостижима для систем ИИ. При этом системы, обеспечившие технологический и научный прорыв, могут самообучаться.