Читаем Риски цифровизации: виды, характеристика, уголовно-правовая оценка полностью

– обеспечение информационной безопасности. В частности, аномальное время работы сотрудника или его нетипичные действия дают возможность установить факт инсайдерской деятельности либо идентифицировать несанкционированный доступ к информационной системе;

– выявление ошибок при экономических расчетах, т. е. фильтрация выбросов привлекает внимание к ошибочно введенной в ручном режиме информации за счет определения ее нетипичности или отсутствия смысла.

Задача сокращения размерности заключается в том, чтобы при помощи некоторых функций преобразования перейти к наименьшему числу признаков объекта, не потеряв при этом никакой существенной информации. Решение задачи дает возможность оптимизации:

– производственных процессов – благодаря выявлению действий, не влияющих на эффективность;

– расходов на содержание сложных систем;

– использования вычислительных ресурсов.

Задача заполнения пропущенных значений – замена недостающих значений в матрице «объекты-признаки» их прогнозными значениями. Метод замены используется в социальных исследованиях, когда данные собираются не в полном объеме; для восстановления данных при сбоях или преднамеренном уничтожении; при прогнозировании удовлетворенности от продукта на основе данных по другим продуктам и другим потребителям.

Кроме обучения с учителем и без учителя, в машинном обучении применяются и другие методы:

Обучение с подкреплением – процесс, при котором происходит обучение модели, не имеющей сведений о системе, но обладающей возможностью производить действия в ней. Действия переводят систему в новое состояние, и модель получает от системы некоторое вознаграждение. Подобное обучение используется:

– в управлении роботами при выполнении таких задач, как манипулирование предметами, навигация в загруженном пространстве, поиск устойчивого положения предмета;

– в управлении технологическими процессами;

– при персонализации показов рекламы в интернете;

– в управлении ценами и ассортиментом в сетях продаж;

– при маршрутизации в телекоммуникационных сетях.

Частичное обучение занимает промежуточное положение между обучением с учителем и без учителя. Пример прикладной задачи – автоматическая рубрикация большого количества текстов при условии, что некоторые из них уже отнесены к каким-то рубрикам. Такая задача стоит при работе с большими объемами текстовых данных экономистами и юридическими службами, а также в научной деятельности.

Динамическое обучение возможно как с учителем, так и без него. Специфика такого обучения состоит в том, что информация о состоянии объектов поступает потоком и требуется немедленно принимать решение по каждому прецеденту, одновременно доучивая модель зависимости с учетом новых прецедентов. Как и в задачах прогнозирования, здесь существенную роль играет фактор времени.

Метаобучение отличается от методов тем, что прецедентами являются ранее решенные задачи обучения. Требуется определить, какие из используемых в них приемов работают более эффективно. Конечная цель – обеспечить постоянное автоматическое совершенствование алгоритма обучения с течением времени.

Биологическое моделирование искусственного интеллекта. Биокомпьютинг, или квазибиологическая парадигма (Biocomputing), – это биологическое направление в ИИ, сосредоточенное на разработке и использовании компьютеров, которые функционируют как живые организмы или содержат биологические компоненты, так называемые биокомпьютеры. В отличие от понимания ИИ, когда исходят из положения о том, что искусственные системы не обязаны повторять в своих структуре и работе структуру и протекающие в ней процессы, присущие биологическим системам, сторонники биокомпьютинга считают, что феномены человеческого поведения, способность человека к обучению и адаптации есть следствие именно биологической структуры и особенностей ее функционирования. Биокомпьютинг позволяет решать сложные вычислительные задачи, организуя вычисления при помощи живых тканей, клеток, вирусов и биомолекул. Часто используют молекулы дезоксирибонуклеиновой кислоты, посредством которых создают ДНК-компьютер. Биопроцессором также могут служить белковые молекулы и биологические мембраны. Например, на основе бактериородопсин-содержащих пленок создают молекулярные модели перцептрона.

Представление и использование знаний. Представление знаний (ПЗ), или Knowledge Representation (KR) – это область ИИ, в которой изучают то, как могут быть представлены знания и факты о мире и какие рассуждения могут быть сделаны с этими знаниями. Проблематикой ПЗ является возможность представления знаний таким образом, чтобы они были достаточными (в полном объеме содержали знания, необходимые для решения проблемы); не избыточными (компактными, естественными, пригодными для эффективных вычислений); способными выразить особенности проблемы; могли компенсировать недостаточную точность представляемых данных и обеспечить приемлемое время вычислений.

Для решения этих задач используется методология инженерии преставления знаний, в которых выделяют:

Перейти на страницу:

Похожие книги

Как справиться с компьютерной зависимостью
Как справиться с компьютерной зависимостью

Компьютер так прочно вошел в нашу жизнь, что большая половина человечества не может представить без него своего существования. Мы проводим за ним не только все рабочее, но и свободное время. Однако не каждый человек знает, что круглосуточное пребывание за монитором несет реальную угрозу как физическому (заболевания позвоночника, сердечно-сосудистой системы и т. д.), так и психическому здоровью (формирование психической зависимости от Интернета и компьютерных игр). С помощью данной книги вы сможете выявить у себя и своих близких признаки компьютерной зависимости, понять причины и механизмы ее возникновения и справиться с ней посредством новейших психологических методик и упражнений.

Виктория Сергеевна Тундалева , Елена Вячеславовна Быковская , М О Носатова , Н Р Казарян , Светлана Викторовна Краснова

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Криптография и свобода
Криптография и свобода

Слово криптография означает тайнопись.Российская криптография имеет многовековую историю, начинающуюся с указов Петра I о «черных кабинетах». До середины 80-х годов XX века криптография в России использовалась только для военных, дипломатических и правительственных линий связи и была строго засекречена. Даже употребление слов «криптография», «шифры», «ключи к шифрам» в открытых публикациях было недопустимо. Но в мире быстро назревала потребность в гражданской криптографии, стремительно развивались информационные технологии, стали появляться компьютерные сети, Интернет, денежные электронные расчеты. Для этого требовались надежные и общедоступные криптографические методы защиты информации.Была ли Россия готова к появлению гражданской криптографии? И да, и нет.Да, потому что еще с советских времен в России существовала прекрасная криптографическая школа и высококлассные специалисты-криптографы, которые долгое время на равных конкурировали с американским Агентством Национальной Безопасности и обеспечивали гарантированную защиту военных, дипломатических и правительственных линий связи.Нет, потому что синдром тотальной секретности всего, что касалось криптографии, восходил к сталинским временам и мало изменился за прошедшие десятилетия. А в подобных условиях очень хорошо себя чувствуют многочисленные чиновники от криптографии.В 1992 году случился кризис: поток фальшивых авизо захлестнул Центральный Банк России и грозил обрушить всю финансовую систему. Потребовалась срочная помощь криптографов: в кратчайшие сроки создать, наладить и запустить в эксплуатацию систему криптографической защиты телеграфных и почтовых авизо в такой огромной структуре, как ЦБ РФ.Эта задача была выполнена за три месяца – неимоверно короткий срок.В России появился первый реальный пример гражданской криптографии.О том, что представляла из себя советская криптографическая школа, о ее специалистах и начальниках, о царившей тогда в стране атмосфере, о том, как была создана система защиты для Центрального Банка России, и, наконец, о том, почему же в России так трудно пробивает себе дорогу гражданская криптография – в этой книге.

Михаил Евгеньевич Масленников , Михаил Масленников

Биографии и Мемуары / Математика / Прочая компьютерная литература / Образование и наука / Книги по IT
Журнал "Компьютерра" №757
Журнал "Компьютерра" №757

- Отвечая на привычный вопрос "ну и как вас (Компьютерру) затронул экономический кризис?", мы уже пару недель бодро говорим: "да вот-с, затронул-с: делаем про него тему номера" - и разговор плавно переходит на другие темы. Однако, у экспертов, к которым мои коллеги обращались с аналогиным вопросом, не было такого замечательного ответа - поэтому получилась тема номера. И даже не последняя.- "Парковка" разверсталась на 4 полосы, но она того стоит. Обзор футурологических концептов гоночных автомобилей 2025 года, разработанных дизайнерами крупнейших автомобильных концернов - это любопытно даже для столь далекого от автомобильной тематики человека, как я.- Сергей Леонов экспериментирует с новым ИБП от APC, Юрий Ревич рассказывает про устройство старых добрых (CD) и новых злых (Blu-ray) оптических носителей. (В этом номере - только про старые добрые, но обещают продолжение).- Евгений Антонович Козловский рассказывает про жигуленок, мерседес и NAS'ы, Сергей Голубицкий - немного про кризис, много про мировые СМИ, журналюг и закрытые торрент-треккеры.- Преподобный Михаил Ваннах пишет о гибридных самоходках, а Василий Щепетнев пытается понять, светит ли ему Нобелевка.

Журнал «Компьютерра» , Компьютерра , Компьютерра Журнал

Документальная литература / Прочая компьютерная литература / Прочая документальная литература / Документальное / Книги по IT