Принцип устойчивости необходим для следующего аргумента. Эксперименты статичны (мы видели путаницу между пространством состояний и областью времени), а жизнь – континуум. Если вы подвергаетесь крошечной вероятности катастрофы («одноразовый» риск), выживаете, подвергаетесь ей снова (еще один «одноразовый» риск) и так далее, в конце концов вы со стопроцентной вероятностью потерпите крах. Путаница возникает, потому что вам кажется, что, если «одноразовый» риск неопасен, еще один такой риск тоже неопасен. (См. рис. 9.) Хорошие новости: некоторым классам риска можно смело приписать почти нулевую вероятность. Наша планета пережила триллионы естественных перемен, случавшихся ежедневно на протяжении более трех миллиардов лет; иначе нас бы тут просто не было. Можно прибегнуть к доводам условной вероятности (с учетом предвзятости выжившего), чтобы исключить вероятность краха всей системы.
Мы не должны принимать
Рассмотрим безусловный ожидаемый момент остановки (катастрофы) в дискретной упрощенной модели:
Аргумент жирных хвостов.
Мы осветим проблему жирных хвостов подробнее. Разумеется, важна дисперсия процесса, однако любые отклонения, которые не выходят за порог катастрофы, значения не имеют.
Логарифмическое преобразование
При аксиоме устойчивости – «риски нужно принимать так, как если бы вы собирались рисковать вечно», применимо только логарифмическое (или аналогичное) преобразование.
Жирнохвостость – свойство, которое обычно вызывает тревогу при отсутствии компактной области определения случайной переменной; жирные хвосты не так опасны, когда переменные ограничены. Однако, как мы видели, достаточно применить логарифмическое преобразование, чтобы случайная переменная с областью определения [0,
Крамер и Лундберг открыли существование трудности в страховом анализе, см. Cramér 1930.
Замечание об эргодичности[125]. Эргодичность нельзя определить статистически, ее нельзя наблюдать, и не существует выявляющего ее теста для временно́го ряда, аналогичного тесту Дики – Фуллера для стационарности (или теста Филлипса – Перрона для порядка интегрирования). Важнее следующее:
Если ваш результат получен путем наблюдения за временны́м рядом, как вы можете говорить о вероятностной мере по ансамблю?
Выход здесь тот же, что и в случае арбитражной схемы: статистического теста нет, но, и это главное, есть вероятностная мера, определяемая предположительно (аргумент «бесплатных булочек не бывает»). Далее, рассмотрите аргумент стратегии «самофинансирования» через, например, динамическое хеджирование. В пределе мы допускаем, что закон больших чисел уменьшит отдачу и мы никогда не дойдем до убытков и до поглощающего барьера. Такая ситуация удовлетворяет нашему критерию эргодичности, однако определить ее статистически невозможно. Более того, почти вся литература о межвременных инвестициях / потреблении требует, чтобы вероятность катастрофы была нулевой.