В математических науках после создания Декартом и Ферма аналитической геометрии, на основе которой укрепилась идея о согласованности между собой различных частей математики, понятие модели было использовано для развития этой идеи. При этом моделью становится принятым обозначать теорию, которая обладает структурным подобием по отношению к другой теории. Две такие теории называются изоморфными, а одна из них выступает как модель другой, и наоборот. Происхождение понятия модели в математике очень хорошо прослежено Н. Бурбаки в «Очерках по истории математики». Отмечая заслуги Декарта в разработке идеи согласованности математических наук друг с другом, авторы этой книги указывают, что Лейбниц первый открыл общее понятие изоморфизма (которое он назвал «подобием») и предвидел возможность «отождествлять» изоморфные отношения и операции; в качестве примера он дает сложение и умножение. Но надо было ждать расширения алгебры, которое имело место в середине XIX в., чтобы увидеть начало реализации того, что открыл Лейбниц. Именно к этому времени начинают умножаться «модели», и ученые привыкают переходить от одной теории к другой посредством простого изменения терминологии.
Это понятие модели как изоморфной теории и вообще изоморфной структуры тесно связано со спецификой абстрактных математических объектов и характером математических методов. В дальнейшем мы увидим, что в математике возникло и несколько иное понятие модели, приближающееся к тому значению термина «модель», которое типично для физических и механических наук. Но как бы там ни было, истолкование модели как изоморфной теории является фактом истории научного мышления. И не удивительно, что в этом значении термин «модель» применяется и в настоящее время в ряде научных контекстов. Мы еще вернемся к этому вопросу и обсудим, насколько это целесообразно.
С другой стороны, в науках о природе (астрономия, механика, физика, химия, биология) термин «модель» стал применяться в другом смысле, не для обозначения теории, а для обозначения того, к чему данная теория относится или может относиться, того, что она описывает. И здесь со словом «модель» связаны два близких друг другу, хотя и несколько различающихся значения. Во-первых, под моделью в широком смысле понимают мысленно или практически созданную структуру, воспроизводящую ту или иную часть действительности в упрощенной (схематизированной или идеализированной) и наглядной форме. Так, уже в древности развитие науки и философии сопровождалось созданием наглядных картин, образов действительности, гипотетически воспроизводящих различные явления в космосе или в микромире. Таковы, в частности, представления Анаксимандра о Земле как плоском цилиндре, вокруг которого вращаются наполненные огнем полые трубки с отверстиями; или представления Птолемея, изложенные в «Альмагесте», о вращении «мира» вокруг неподвижной Земли; или же относящиеся к микромиру представления Демокрита, Эпикура об атомах, их круглой или крючкообразной форме, их хаотическом или прямолинейном движении. И хотя интерпретация гносеологической роли подобных моделей может быть различной в зависимости от общефилософских позиций того или иного ученого, тем не менее модели в этом смысле составляли необходимый элемент естественно-научного познания, поскольку оно, не ограничиваясь математическим формализмом, стремилось раскрыть объективное содержание, качественную сторону теории.
Подобные модели представляют собой существенный момент всякой исторически преходящей научной картины мира, и вопрос может заключаться в том, насколько научно обоснованы эти модели, каковы их функции, назначение, цель. Однако всегда модель в этом смысле выступает как некоторая идеализация, упрощение действительности, хотя самый характер и степень упрощения действительности, вносимые моделью, могут со временем меняться. При этом модель как составной элемент научной картины мира содержит и элемент фантазии, будучи продуктом творческого воображения, причем этот элемент фантазии в той или иной степени всегда должен быть ограничен фактами, наблюдениями, измерениями. В этом смысле говорили о моделях Герц, М. Планк, Н. А. Умов и другие физики.
В несколько ином более узком смысле термин «модель» применяют тогда, когда хотят изобразить некоторую область явлений с помощью другой, более хорошо изученной, легче понимаемой, более привычной, когда, другими словами, хотят непонятное свести к понятному. Так, физики XVIII в. пытались изобразить оптические и электрические явления посредством механических, рассматривая, например, свет как колебания «эфирной материи» (X. Гюйгенс) или поток корпускул (И. Ньютон) или же сравнивая электрический ток с течением жидкости по трубкам, движение молекул в газе с движением биллиардных шаров, строение атома со строением солнечной системы («планетарная модель атома») и т.п.