Читаем Роман с Data Science. Как монетизировать большие данные полностью

Monetary – сумма денег, которую потратил клиент. Здесь все, как у Frequency, – нужно постараться ограничить время, в течение которого измеряется величина; и чем больше денег было потрачено, тем больше вероятность того, что клиент вновь сделает заказ. На практике Monetary обычно не используют, так как этот показатель сильно коррелирует с Frequency. Поэтому RFM-сегментация в большинстве случаев называется RF-сегментацией.

Итак, у нас есть два параметра для сегментации – Recency (далее R) и Frequency (далее F), оба эти параметра могут прогнозировать дальнейшее поведение клиента c определенной точностью. И если объединить их в один параметр RF – то точность прогноза повышается в разы. Далее я приведу последовательность шагов (по методике Джима Ново):

• Параметр R – бьется на пять частей, и появляются пять значений от 1 до 5. 5 – это когда заказ был сделан совсем недавно.

• Параметр F – бьется на пять частей, и появляются пять значений от 1 до 5. 5 – это когда клиент в течение определенного периода времени (этот период тоже нужно рассчитать) сделал очень много заказов.

• Строится RF-сетка (grid): в виде двузначной комбинации R и F. 55 – сегмент лучших клиентов, 11 – самых худших клиентов.

• Вычисляются вероятность совершения следующего действия для каждого сегмента.

• 25 RF сегментов объединяются по вероятностям (из прошлого шага) в большие сегменты.

С точки зрения RFM, самый лучший клиент – это тот (рис. 9.3), который совершил покупку совсем недавно, до этого сделал их много на хорошую сумму денег. Этот фундаментальный принцип помог создавать фичи, которые предсказывают вероятность совершения действий в дальнейшем. Его можно распространить на любые действия людей, кроме покупок: вероятность заболеть, вероятность вернуться на сайт, вероятность попасть в тюрьму, вероятность кликнуть на баннер. Всего лишь с помощью этих переменных и простой линейной модели на одном из конкурсов Kaggle я смог получить очень неплохой результат. Для лучших результатов, кроме действительных цифр, я использовал бинарное кодирование. За базу можно взять сегментацию, о которой я написал выше. Можно брать отдельно переменные R и F или целиком RF.

Рис. 9.3. RF-сегментация

<p><strong>Последний совет</strong></p>

Кроме каких-либо теоретических книг в качестве дополнительных источников знаний рекомендую два бесплатных ресурса: книгу Эндрю Ына [60] про практику машинного обучения и правила Google для инженерии ML-проектов [72]. Они помогут в дальнейшем совершенствовании.

<p>Глава 10</p><p>Внедрение ML в жизнь: гипотезы и эксперименты</p>

Все эксперименты проводятся для того, чтобы дать фактам возможность опровергнуть нулевую гипотезу.

Сэр Рональд Фишер, «Планирование экспериментов» (1935)

Модели ML рождаются, живут и умирают. Жизнь меняется, это закон природы: если что-то долго не меняется, то оно умирает. Улучшая и оптимизируя модель, мы даем ей новую жизнь и надежду. Помочь нам в этом могут гипотезы (или идеи) и эксперименты, подтверждающие или отвергающие гипотезы. В 2016 году на сцене концертного зала MIT я рассказывал про то, как убивать гипотезы как можно раньше. Доклад зашел на ура, поэтому я решил изложить те идеи и выводы в этой главе.

<p><strong>Гипотезы</strong></p>

Гипотеза – это идея по улучшению продукта. Неважно, что это – сайт, товар или магазин. Существует даже должность менеджера по продукту, одной из задач которого является создание и поддержание списка таких гипотез, расстановка приоритетов их исполнения. Список гипотез еще называют бэклогом (backlog). Он является важным стратегическим элементом развития компании. Как придумывать гипотезы и расставлять их в порядке приоритетов – тема отдельной большой книги. Если кратко, идеальная ситуация выглядит так – продуктологи взаимодействуют с рынком, с существующими и потенциальными клиентами, изучают конкурентные решения, проводят фокус-группы, чтобы понять, сколько то или иное изменение (гипотеза) принесет компании денег. На основе этих исследований гипотезы попадают в список и приоретизируются. Бизнес требует денежных метрик для приоритезации гипотез, чем точнее они подсчитаны, тем лучше. Но в реальности с большинством гипотез сделать это очень сложно, и оценка происходит по принципу «пальцем в небо». Самые громкие коммерческие успехи в истории были революционными, а не эволюционными – вспомните хотя бы появление первого iPhone.

Перейти на страницу:

Все книги серии IT для бизнеса

О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co
О криптовалюте просто. Биткоин, эфириум, блокчейн, децентрализация, майнинг, ICO & Co

Эта книга – самый быстрый способ войти в мир криптовалют и начать ими пользоваться.Вы хоть раз спрашивали себя, что такое биткоин, криптовалюта или блокчейн? А децентрализация? Как вы думаете, кто выиграл от появления интернета? Люди, которые были подготовлены к нему и стали использовать его в личных или коммерческих целях до того, как подтянулись остальные.Новая технология «блокчейн» дает аналогичную возможность. Она играет сейчас такую же роль, какую играл интернет последние 20 лет. Главный вопрос, который каждый себе задает, это «c чего мне начать?»Джулиан Хосп, соучредитель компании TenX и один из ведущих мировых экспертов по криптовалютам, просто и доступно объясняет сложные термины и дает четкую инструкцию к действию: как пользоваться криптовалютами, соблюдая правила онлайн-безопасности.У Илона Маска уже есть книга Джулиана Хоспа. А у вас?

Джулиан Хосп

Деловая литература / Маркетинг, PR, реклама / Финансы и бизнес
Роман с Data Science. Как монетизировать большие данные
Роман с Data Science. Как монетизировать большие данные

Как выжать все из своих данных? Как принимать решения на основе данных? Как организовать анализ данных (data science) внутри компании? Кого нанять аналитиком? Как довести проекты машинного обучения (machine learning) и искусственного интеллекта до топового уровня? На эти и многие другие вопросы Роман Зыков знает ответ, потому что занимается анализом данных почти двадцать лет. В послужном списке Романа – создание с нуля собственной компании с офисами в Европе и Южной Америке, ставшей лидером по применению искусственного интеллекта (AI) на российском рынке. Кроме того, автор книги создал с нуля аналитику в Ozon.ru.Эта книга предназначена для думающих читателей, которые хотят попробовать свои силы в области анализа данных и создавать сервисы на их основе. Она будет вам полезна, если вы менеджер, который хочет ставить задачи аналитике и управлять ею. Если вы инвестор, с ней вам будет легче понять потенциал стартапа. Те, кто «пилит» свой стартап, найдут здесь рекомендации, как выбрать подходящие технологии и набрать команду. А начинающим специалистам книга поможет расширить кругозор и начать применять практики, о которых они раньше не задумывались, и это выделит их среди профессионалов такой непростой и изменчивой области. Книга не содержит примеров программного кода, в ней почти нет математики.В формате PDF A4 сохранен издательский макет.

Роман Зыков

Карьера, кадры / Прочая компьютерная литература / Книги по IT

Похожие книги

100 лучших игр и упражнений для успешного супружества и счастливого родительства
100 лучших игр и упражнений для успешного супружества и счастливого родительства

Книга известного психолога-консультанта Михаила Кипниса представляет собой сборник психологических игр, упражнений и занимательных текстов, которые помогут выстроить эффективную и увлекательную групповую работу тренерам, педагогам, семейным психологам и консультантам. Описание каждого упражнения включает в себя рекомендации по его применению, необходимые материалы, инструкции участникам, оценку необходимого для его проведения времени и размера группы, вопросы для дискуссии с участниками и выводы, к которым они должны прийти.Супружеские пары, родителей и их детей это пособие обучит открытой и конструктивной коммуникации, установлению эмоционально богатых, доверительных отношений, укрепит партнерство между взрослыми членами семьи и детьми, даст почувствовать радость, ответственность и счастье семейного общения.

Михаил Шаевич Кипнис

Карьера, кадры