Когда я слышу слово «распределение» – представляю себе гистограмму частот появления значений. В нашем примере это будет гистограмма с диаметрами шаров. Мы работаем с непрерывными числовыми значениями, вся шкала гистограммы разбивается на диапазоны, как правило, равной длины (0–10, 10.01–20…). На основе гистограммы сложно принимать решения, поэтому в гипотезах обычно оценивают какой-то отдельный параметр распределения, например среднее или медиану. Строим по ним гистограмму (рис. 10.1).
Такие гистограммы (распределения) очень сложно сравнить друг с другом, поэтому и используются числовые статистики распределений.
Генеральная совокупность имеет свое распределение шаров, выборка – свое. Чем больше выборочное распределение похоже на распределение генеральной совокупности – тем лучше. Случайность вытаскивания шаров очень важна для этого – ведь шары в резервуар могли насыпать сначала одного диаметра, потом другого. Тогда на поверхности могут оказаться самые большие шары, и если мы их будем брать преимущественно оттуда, то наше распределение шаров внутри выборки окажется смещенным в сторону большего диаметра, поэтому наши выводы могут оказаться неверными.
Рис. 10.1. Пример распределения
Возвращать шары нужно, чтобы работать с исходным распределением генеральной совокупности, так как каждое вытягивание будет независимо от предыдущих. Теперь давайте применим интуицию – чем больше шаров мы вытянем, тем лучше распределение выборки будет похоже на распределение в резервуаре, и тем выше точность оценки параметра в выборке мы получим. А сколько нужно вытянуть шаров, чтобы получить приемлемую точность? На этот вопрос уже ответит статистика – об этом чуть позже, а сейчас усложним задачу.
Теперь у нас есть два резервуара, нужно сравнить средний диаметр шаров между ними. Самое время перейти к формулировке гипотезы. Для этого нам понадобится сформулировать основную (
• Нулевая гипотеза
• Альтернативная гипотеза
Тестирование гипотез похоже на суд. Мы считаем, что обвиняемый невиновен, пока не будет найдено строгое доказательство, что он виновен. Аналогично с гипотезами [77], изначально считаем гипотезу
Теперь переформулируем эти общие утверждения для нашей задачи с двумя резервуарами в виде двусторонней гипотезы:
Гипотеза
Гипотеза
Можно также сформулировать в виде односторонней гипотезы:
Гипотеза
Гипотеза
С моей точки зрения, лучше использовать односторонние гипотезы. Ведь проверяя какую-либо идею, мы стремимся улучшить метрику, а значит, нас интересует вопрос, стало ли лучше (гипотеза
Статистическая значимость гипотез
Суд может ошибаться, тестирование статистических гипотез – тоже. Определим эти ошибки с помощью таблицы. Они бывают двух типов (табл. 10.1): ошибка первого рода, когда мы ошибочно отклонили нулевую гипотезу
Таблица 10.1. Ошибки статистических гипотез
На языке статистики ошибки описываются вероятностями:
Вероятность ошибки 1-го рода:. Обычно исследователи используют = 0.05 (5 %).
Вероятность ошибки 2-го рода:. Величина (1 —) называется мощностью, которая является вероятностью найти улучшение, если оно есть.
Для упрощения тестирования гипотез Фишер [76] ввел величину
В традиционной, или, как я ее называю, фишеровской статистике,
Таблица 10.2. Трактовка p-значений
Теперь посмотрим на графическую интерпретацию двусторонней гипотезы. На рис. 10.2 изображено сравнение распределения нулевой и альтернативной гипотез для нашего примера с двумя резервуарами.