Читаем Российская Академия Наук полностью

Формула Готта находит выражение в человеческой интуиции, когда, например, мы полагаем, что если некий дом простоял год, то очень вряд ли он обрушится в ближайшие несколько секунд. Этот пример показывает, что мы можем делать вероятностные высказывания об уникальных событиях, не зная ничего о реальном распределении вероятностей. Большинство попыток опровержения формулы Готта основано на том, что приводится контрпример, в котором она якобы не работает – однако в этих случаях нарушается принцип того, что предмет наблюдается в случайный момент времени. Например, если взять младенцев или очень старых собак (как делал Кейв), то формула Готта не будет предсказывать ожидаемую продолжительность их жизни, однако молодые люди или старые собаки не есть люди или собаки, взятые в случайный момент времени.) Формула Готта была проверена экспериментально, и давала правильные результаты для времени радиоактивного распада атома неизвестного типа, а также для времени существования бродвейских шоу.

В отношении будущего человеческой цивилизации формула Готта применяется не к времени, а к рангу рождения, поскольку население менялось неравномерно, и более вероятно оказаться в период с высокой плотностью населения. (Однако если применить её к времени существования вида, то ничего невероятного не получится: с вероятностью в 50% человечество просуществует от 70 тысяч до 600 тысяч лет.) Предполагается, что мы, родившись, произвели акт наблюдения нашей цивилизации в случайный момент времени. При этом мы узнали, что всего за историю человечества было только примерно 100 миллиардов людей. Это значит, что мы, скорее всего, попали в середину отрезку, и значит, что очень вряд ли (с менее 0,1% вероятности) суммарное число людей будет 100 триллионов. А это значит, что шанс того, что человечество распространится по всей галактике в течение многих тысячелетий, также мал.

Однако из этого также следует, что вряд ли что мы живём в последнем миллиарде родившихся людей, а значит, у нас есть, скорее всего, ещё несколько сотен лет до конца света, учитывая ожидаемое население Земли в 10 млрд. человек. Для XXI века вероятность гибели цивилизации, исходя из формулы Готта, применяемой у рангу рождения, составляет 15-30 %, в зависимости от числа людей, которые будут в это время жить. Как ни странно, эта оценка совпадет с предыдущей, на основе парадокса Ферми. Разумеется, этот вопрос нуждается в дальнейших исследованиях.

Рассуждение о конце света Картера-Лесли

Лесли рассуждает несколько другим образом, чем Готт, применяя байесову логику. Байесовая логика основывается на формуле Байеса, которая связывает апостериорную вероятность некой гипотезы с априорной её вероятностью и вероятностью новой порции информации, то есть свидетельства, которую мы получили в поддержку этой гипотезы. (Я рекомендую в этом месте обратиться к переведённым мною статьям Ника Бострома о Doomsday Argument, поскольку не могу изложить здесь всю проблематику в деталях.)

Лесли пишет: допустим, есть две гипотезы о том, сколько будет всего людей от неандертальцев до «конца света»:

1-ая гипотеза: всего будет 200 млрд. людей. (То есть конец света наступит в ближайшее тысячелетие, так как всего на Земле уже жило 100 млрд. людей.)

2-ая гипотеза: всего будет 200 трлн. людей (то есть люди заселят Галактику).

И допустим, что вероятность каждого из исходов равна 50% с точки зрения некого абстрактного космического наблюдателя. (При этом Лесли предполагается, что мы живём в детерминистическом мире, то есть, но эта вероятность твёрдо определена самими свойствами нашей цивилизации, хотя мы этого и не знаем.) Теперь, если применить теорему Байеса и модифицировать эту априорную вероятность с учётом того факта, что мы обнаруживаем себя так рано, то есть среди первых 100 млрд. людей, мы получим сдвиг этой априорной вероятности в тысячу раз (разница между миллиардами и триллионами). То есть вероятность того, что мы попали в ту цивилизацию, которой суждено умереть относительно рано, стала 99,95%.

Проиллюстрируем это примером из жизни. Допустим, в соседней комнате сидит человек, который с равной вероятностью читает или книгу, или статью. В книге – 1000 страниц, а в статье 10 страниц. В случайный момент времени я спрашиваю этого человека, какой номер страницы, которую он читает. Если номер страницы больше, чем 10, я однозначно могу заключить, что он читает книгу, а если номер страницы меньше 10, то здесь мы имеем тот случай, когда можно применять теорему Байеса. Номер страницы меньше 10 может получиться в двух случаях:

А) человек читает книгу, но находится в её начале, вероятность этого – 1% из всех случаев, когда он читает книгу.

Б) Человек читает статью, и здесь эта вероятность равна единице из всех случаев, когда он читает статью.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже