Все эти сведения используются для управления радиочувствительностью клетки, ибо понятно, что, увеличивая объем репарации, можно ослабить последствия облучения. Как мы увидим дальше, не менее важным оказывается и альтернативная возможность — усилить лучевое поражение клетки, что также может быть достигнуто воздействием на механизмы и системы репарации, теперь, однако, в противоположном направлении,— ингибируя (подавляя) их отдельные стороны.
Есть все основания предположить, что и огромный диапазон межвидовых различий в радиочувствительности также в значительной мере связан с совершенством репарационных систем. Достаточно допустить особенности их организации у отдельных видов, чтобы ожидать любые различия в величинах доз, при которых реализуется одна и та же доля первичных повреждений.
Теперь мы видим, что исход поражения клетки зависит не только от первичного поражения, но и от возможности восстановления ее жизнеспособности. Отдавая должное истории, нельзя не вспомнить, что еще в 1925 году Р. Vencel и Р. Vinembergen, а в 1952 году В. Я. Александров чисто умозрительно, но удивительно дальновидно отметили, что исход лучевого поражения складывается из трех компонентов: первичной повреждаемости, возможности проявления поражения и восстановления. Следует лишь иметь в виду, что под восстановлением тогда понималась не репарация повреждения, а восстановление целостности поврежденной ткани и организма за счет размножения сохранивших жизнеспособность клеток. Однако это нисколько не умаляет значения упомянутого постулата, так же как и правила Бергонье и Трибондо, высказанные на самых ранних этапах развития радиобиологии.
КТО ВЫЖИВЕТ?
Венец научной работы есть предсказание.
Сейчас нам предстоит от клеточных радиационных эффектов перейти к рассмотрению радиочувствительности целого организма и понять причины гибели животных и человека, т. е. раскрыть радиобиологический парадокс на уровне организма. Без этого невозможно научиться управлять радиочувствительностью, а это, как вы помните, основная задача радиобиологии.
Критические системы
Еще в сороковых годах Борисом Раевским в опытах на мышах было обнаружено, что в определенных интервалах, несмотря на увеличение дозы, средние сроки отмирания животных не меняются.
Иными словами, между дозой излучения, поглощенной в организме, и средней продолжительностью жизни существует строгая зависимость. Последняя может быть описана кривой, состоящей из трех участков (рис. 10). Начальный участок охватывает период от нескольких недель до нескольких дней и соответствует дозам от нескольких сот рентген до 1000 Р. Далее следует участок в виде плато, где средняя продолжительность жизни, составляя около четырех дней, не изменяется, несмотря на увеличение дозы от 1000 до 10 000 Р. С дальнейшим ростом дозы продолжительность жизни снова резко укорачивается до нескольких часов — третий участок кривой.
Эти три характерных компонента кривой отражают несовместимые с жизнью поражения жизненно важных критических органов или систем: соответственно костного мозга, тонкого кишечника и центральной нервной системы (ЦНС), выходящих из строя в соответствующем диапазоне доз.
В дальнейшем такого рода ступенчатый характер отмирания, связанный с выходом из строя критических систем, подтвержден и для других млекопитающих — крыс, морских свинок, собак, овец и обезьян. И. Б. Бычковская, обнаружившая для самых разнообразных объектов — одноклеточных, земноводных, насекомых, червей и даже растений ступенчатую зависимость времени наступления гибели от дозы, показала ее общебиологическую закономерность, отражающую многосистемность в реагировании на облучение целого организма.