Успехи, достигнутые лучевой терапией за 80-летний период своего существования (мы помним, что рентгеновские лучи стали использоваться с лечебной целью сразу же после их открытия), главным образом, связаны с двумя факторами. Первый из них — постоянный физико-технический прогресс, определяющий применение новых видов и источников ионизирующих излучений, второй — совершенство врачебного искусства лучевых терапевтов, опирающихся на многолетний опыт своих предшественников. В значительной степени эмпирический характер лучевая терапия сохраняет и по сей день. Ее перевод на строго научные рельсы связан с использованием сведений об особенностях биологических реакций на облучение различных нормальных тканей и опухолей. Такое слияние клинических наблюдений с результатами экспериментальных радиобиологических исследований началось в последние полтора-два десятка лет, и его результаты не замедлили сказаться. О них-то, о трудностях на этом пути и обнадеживающих перспективах, и пойдет речь.
Враг распознан
Задача лучевой терапии сводится к максимально быстрому подавлению опухолевого роста. С точки зрения радиобиологии она может быть оптимально решена путем лучевой стерилизации раковой ткани, произведенной без угрожающих жизни пациента повреждений окружающих нормальных тканей. На последнем конгрессе по радиационным исследованиям, прошедшем в 1974 году, американский радиобиолог Мендельсон довольно образно обрисовал ситуацию, сказав, что лучевая терапия балансирует между двумя в равной степени опасными последствиями: недоизлечением опухоли при недостаточной дозе излучения и повреждением нормальных тканей при ее превышении.
Морис Тюбиана — крупнейший французский радиобиолог (физик и врач по образованию), используя количественные данные клеточной радиобиологии, приводит следующие расчеты.
Если опухоль круглой формы имеет диаметр 2 см, а составляющие ее клетки 20 мкм, то она состоит из 109
клеток. Допускается, что рост опухоли будет подавлен в том случае, если имеется лишь один из 100 шансов на сохранение одной жизнеспособной клетки. Для этого необходима такая доза, чтобы доля выживших клеток составила 10-11. Эта доза оказывается равной 2500—3000 Р. Так как однократное облучение в такой дозе вызовет тяжелое поражение тканей, то оно осуществляется в виде фракционированного курса (многократных сеансов облучения) с интервалами между отдельными фракциями. Во время таких перерывов происходит частичное восстановление жизнеспособности здоровых клеток (и это хорошо, так как позволяет ослабить поражение нормальных тканей) и, к сожалению, частично опухолевых, вследствие чего суммарную дозу приходится увеличивать в 2—3 раза. Но и это часто приводит лишь к временному эффекту, в последующем опухолевый рост возобновляется — возникает так называемый рецидив, справиться с которым препятствует толерантность (устойчивость) нормальных тканей, находящаяся на пределе в результате предшествующего облучения.Источником рецидивирования в основном являются гипоксические зоны, образующиеся в опухоли из-за недостаточного ее кровоснабжения. Дело в том, что формирование кровеносных сосудов, доставляющих в опухоль вместе с кровью кислород, как правило, отстает от роста клеточной массы опухоли. Находящиеся в таких зонах клетки, как вы теперь знаете, обладают повышенной радиорезистентностью. Для их дезактивации требуются дозы в 2—3 раза большие, чем в условиях хорошей оксигенации, т. е. заведомо повреждающие нормальные ткани.
Рис. 19 дает представление о роли фракции гипоксических клеток на исход лучевой терапии. Например, один и тот же лечебный эффект дозы 4500 Р может быть достигнут при лечении опухолей, диаметр которых различается более чем в 100 раз — 75, 3 и 0,5 мм, если доля гипоксических клеток составляет соответственно 0, 1 или 100%.
Наличие гипоксических клеток, таким образом, делает опухоли менее радиочувствительными, чем хорошо оксигенированные нормальные ткани. Отсюда разработка средств и способов преодоления радиорезистентности, или (что то же самое) повышения радиочувствительности гипоксических клеток опухоли, т. е., как говорят, расширения терапевтического интервала, составляет первостепенную задачу радиобиологии.
Артиллерия, кислород, химическая атака, перегрев