В популяции есть дети, взрослые, старики, и каждый из них несет два аллеля каждого аутосомного гена. Тогда, казалось бы, генетический размер популяций — то есть общее число генов в ней — можно просто считать в два раза большим, чем число людей в популяции. Но для изучения популяции важно знать, сколько генов будет передано следующему поколению. Следовательно, в подсчёт уже нельзя включать гены стариков и детей — генетического прошлого и генетического будущего популяции. Однако и оставшиеся гены также различны по своим судьбам. То, что взрослые, находящиеся в репродуктивном возрасте, оставляют разное число потомков, с точки зрения генетики означает, что они передадут меньшее или большее число копий своих генов следующему поколению. Чем больше в данной популяции семьи различаются по своему размеру, тем меньше генетически эффективный размер популяции. Но и это ещё не все: необходимо, чтобы дети — носители родительских генов — выжили, выросли, обзавелись своими семьями, оставили потомков, то есть, чтобы не прервалась передача генов по цепи поколений.
Например, даже неравное соотношение полов в популяции может означать, что гены не всех мужчин и женщин будут переданы следующему поколению. И это немаловажно. Представим себе «гаремную» популяцию (в которой лишь малая часть всех мужчин передаёт свои гены следующему поколению), и пусть в каждом из 10 гаремов по 50 жен (итого, 510 человек, передающих свои гены следующему поколению). Генетически эффективный размер Ne
такой популяции будет менее 40, а вовсе не 500, как было бы, если бы равное число мужчин и женщин (по 250) участвовали в передаче генов следующему поколению. Иными словами, генетически эффективный размер Ne нашей «гаремной» популяции с 510 репродуктивно активными членами окажется меньше генетически эффективного размера крошечной популяции с 20 мужчинами и 20 женщинами, но заключающими браки свободно и равноправно.Все эти и многие другие обстоятельства интегрированы в показателе генетически эффективного размера популяции Ne
. Обычно он составляет около 30 % от общего числа генов в популяции. Это значит, что из всех генов популяции на каждый момент времени лишь треть связана с формированием генофонда следующего поколения. И генетические свойства нового поколения начинают зависеть от того, насколько полно (или же неравномерно) были представлены в этой трети гены родительского поколения.При оценке дифференциации генофонда через равенство Fe
=1/(1+4NeMe) по умолчанию предполагается стационарность генетического процесса и постоянство эффективного размера популяций Ne, причём не только в пространстве, но и во времени. Этот вопрос рассматривался, в частности, в работах [Rogers, Jorde, 1995; Bowcock et al., 1991, Rychkov, Sheremetyeva, 1977], где показано, что для широкого круга популяционно-генетических задач эффективный размер популяций можно принять постоянным для всей ойкумены на протяжении последних 10 тыс. лет [Rogers, Jorde, 1995, Bowcock et al., 1991]. Это связано с тем, что в ряду популяций в пространстве, как и во временном ряду поколений одной популяции, генетически эффективный размер Ne определяется не как простая арифметическая средняя (∑Nk/k) по k популяциям, а как гармоническая средняя (1/к∑1/ Nk)!. Так, например, для шести популяций с численностью 10, 100, 1’000, 10’000, 100’000, 1’000’000, средняя гармоническая величина Ne будет равна лишь 50, а не 185 тысячам, как было бы в случае арифметической средней. Иными словами, генетически эффективный размер задаётся самыми «малыми» популяциями (как в примере с неравенством полов в «гаремной» популяции он задавался наименьшей — мужской — частью популяции).Очень важно и то, что рост численности населения главным образом связан с увеличением числа популяций, а не их среднего генетически эффективного размера.
СЛУЧАЙНЫЙ ДРЕЙФ ГЕНОВ