3:3:3:1, 3:4:3:0, 3:3:4:0, 4:3:3:0, 4:3:2:1, 4:2:3:1, 4:4:2:0, 4:2:4:0, 4:2:2:2.
С раскладом 4:2:2:2 вистующий посадит контракт, если начнёт разыгрывать козырь сам. Строго говоря, у него может не найтись нужных приёмов в побочных мастях, поэтому шансы на выигрыш у вас есть. Но они очень незначительны, и мы их не учитываем.
В одном случае из девяти рассмотренных карта будет зеркальной (4:3:3:0), и вы возьмёте только четыре взятки. Вероятность этого события равна 0,00054×2. Вероятность каждого расклада нужно удвоить, так как вам всё равно, у кого из партнёров встретился данный расклад.
Выше уже отмечалось, что при вероятностном подходе оптимизируется не выигрыш отдельного контракта, а математическое ожидание выигрыша при регулярной игре. Приведённые зависимости позволяют определить при игре в преферанс вероятности повторения раскладов как случайных событий и рассчитать математическое ожидание выигрыша (проигрыша) в конкретных ситуациях.
Рассмотрим методику определения математического ожидания выигрыша и поиска оптимальных решений на некоторых примерах, приведённых выше.
Вы играете «сочинку» вчетвером, объявили мизер. Чтобы он был чистым, нужно купить в прикупе одну из семи заказных карт. Вероятность выигрыша мизера
Если мизер не сыгран (вероятность этого события 0,45), вы запишете за одну взятку 100 на гору, проигрыш составит также 75 вистов. Математическое ожидание выигрыша:
На такой карте мизер нужно объявлять.
Математическое ожидание выигрыша:
Если всегда играть контракт 10 взяток, вы выиграете 913 контрактов, а 87 проиграете, причём проигрыш составит 115 вистов. В этом случае математическое ожидание выигрыша:
Таким образом, установлено, что оптимальным решением в данной ситуации будет заказ контракта 9 взяток:
Для облегчения дальнейших расчётов математического ожидания в табл. 1 приведены выигрыши и проигрыши в вистах при различных контрактах и мизере.
В качестве базовой пульки рассматривается «сочинка» вчетвером.
Таблица 1. Стоимость игр («сочинка» вчетвером)
Контракт | Выигрыш при сыгранном контракте | Проигрыш при посадке на игре без одной взятки | Проигрыш на каждой следующей недостающей взятке |
---|---|---|---|
6 | 7 | 31 | 23 |
7 | 18 | 58 | 46 |
8 | 33 | 81 | 69 |
9 | 52 | 100 | 92 |
10 | 75 | 115 | 115 |
М | 75 | 75 | 75 |
В следующих параграфах на основе аналогичных приёмов оценки вероятностей расклада и математического ожидания выигрыша (проигрыша) даны достаточно общие рекомендации по оптимальным решениям при торговле, сносе, заказе контракта, игре на висте, при розыгрыше контракта, мизера или распасовки. Иногда для таких рекомендаций нужно знать только вероятность расклада (например, при выборе оптимального сноса достаточно оценить вероятность лишней взятки на оставленных картах). В других случаях для принятия оптимального решения нужно рассчитать математическое ожидание выигрыша (заказ игры, объявление мизера). Но часто этой информации недостаточно для принятия оптимальных решений. Нужно анализировать постоянно повторяющиеся ошибки (то, что называется игровым опытом, экспериментальной статистикой), а также учитывать априорную информацию и интуицию, которые трудно, а часто и невозможно формализовать. В этой главе на основе теории вероятностей и практики игры в преферанс даны только общие рекомендации и соображения по оптимальным решениям, а также по априорной информации, которые необходимо учитывать. Практические рекомендации по оптимальным решениям в конкретных раскладах приведены в других главах.
Колода сдана, у трёх игроков по десять карт, ещё две лежат в прикупе. Пора начинать торговлю. Карты в среднем распределяются равномерно: по 3,3 взятки на руках у каждого. Поэтому всех беспокоит один и тот же вопрос: вступить в торговлю или спасовать. Какое решение лучше?