Читаем Самая сложная задача в мире. Ферма. Великая теорема Ферма полностью

После смерти Куммера в 1893 году серьезные исследователи перестали заниматься поисками доказательства теоремы Ферма. В течение десятилетий эти поиски были уделом математиков-любителей, которые искали Грааль, обещающий славу и некое материальное вознаграждение (в начале XX века Пауль Вольфскель установил премию в 100 тыс. марок тому, кто докажет или опровергнет Великую теорему Ферма). Но методы, используемые этими любителями, были настолько же примитивны, как и методы самого Ферма, что снова и снова обрекало их на поражение. Изобретение компьютеров позволило начать поиски контрпримеров. Как известно, достаточно только одного контрпримера (в случае Ферма — найти по крайней мере одну тройку х,у и z натуральных чисел, для которых выполнялось бы равенство при n > 2), чтобы доказать, что теорема ложная. Наоборот, если нужно доказать ее истинность, не хватит и миллиона примеров.

Компьютеры, каждый раз все более мощные, позволили доказать в начале 1980-х годов, что Великая теорема истинна для всех значений п до четырех миллионов. Но этого было недостаточно. Хотя большинство математиков было убеждено в том, что теорема истинна, нельзя утверждать какой-то результат, сколько бы положительных случаев его ни подкрепляло. Ярким примером этого может служить гипотеза, которую сформулировал Эйлер в XVIII веке. В ней утверждалось, что равенство х4 + у4 + z4 = w4 не имеет натуральных решений. Только в 1988 году, примерно через 200 лет после смерти Эйлера, с помощью найденного контрпримера было доказано, что его гипотеза ложна. У уравнения существует следующее решение: x = 2682 440, у = 15365 639, z = 18 796 760, a w = 20 615 673.

Есть некая справедливость в том, что человек, который опроверг Ферма с его простыми числами, сам был, в свою очередь, опровергнут.

Но в 1983 году немецкий исследователь по имени Герд Фальтингс совершил гигантский прорыв, доказав, что если и существуют натуральные решения уравнения Ферма, то их число конечно. Это не доказывало теоремы, в которой говорится, что число решений равно нулю, но это был значительный прогресс. Будем осторожны и проясним, что конечное число решении может быть равно 101010 000 000 000 000 000 000 000 000 000 000 000 , так называемому "числу Скьюза", связанному с распределением простых чисел. Речь идет о невообразимо большом числе, намного большем, чем количество частиц во Вселенной, или даже большем, чем число возможных взаимодействий между этими частицами. Годфри Харди назвал его "самым большим числом, которое когда-либо имело применение в математике".

Метод Фальтингса основывался на дифференциальной геометрии. Она изучает, в общих чертах, обобщенные кривые и геометрические поверхности, используя для этого такие инструменты исчисления, как дифференцирование и интегрирование. Группа советских исследователей в 1970-х годах поняла, что можно связать некоторые проблемы теории чисел, то есть теории, к которой принадлежит теорема Ферма, с некоторыми проблемами дифференциальной геометрии. Эти исследователи построили мост между двумя островами, очень далекими друг от друга, соединяя специалистов, ранее не взаимодействовавших между собой.

Фальтингс связал уравнение Ферма (xn + yn = zn) с различными поверхностями в области дифференциальной геометрии, по одной для каждого значения n. Такие поверхности похожи на бублики, только вместо одной дырки в центре у них много дыр. Чем больше п, тем больше дыр. Фальтингс связал возможность существования более чем одной дыры с тем фактом, что у соответствующего уравнения Ферма есть конечное число решений. Это был большой шаг, но все еще недостаточный.


ГИПОТЕЗА ТАНИЯМЫ — СИМУРЫ

Возвращаясь к Великой теореме, никто не представлял себе, какие сюрпризы она может преподнести. Если математик эпохи Ферма работал с близкими нам элементами, такими как круги или простые числа, то исследователи последующих эпох стали создавать каждый раз все более любопытные элементы и пытались понять законы, которые регулируют их поведение.

Эллиптические кривые для с = 0 и различных значений a и b.


В этом месте повествования важно не расстраиваться, если не удастся понять сложных математических теорий, которые используются для того, чтобы "снести стену". Никакой неспециалист не может точно понять их. На самом деле только профессиональный ученый способен детально рассмотреть эти аргументы. Как бы то ни было, математики создали теорию, устанавливающую определенное соответствие между эллиптическими кривыми и модулярными функциями.

Перейти на страницу:

Похожие книги

Опасная идея Дарвина: Эволюция и смысл жизни
Опасная идея Дарвина: Эволюция и смысл жизни

Теория эволюции посредством естественного отбора знакома нам со школьной скамьи и, казалось бы, может быть интересна лишь тем, кто увлекается или профессионально занимается биологией. Но, помимо очевидных успехов в объяснении разнообразия живых организмов, у этой теории есть и иные, менее очевидные, но не менее важные следствия. Один из самых известных современных философов, профессор Университета Тафтс (США) Дэниел Деннет показывает, как теория Дарвина меняет наши представления об устройстве мира и о самих себе. Принцип эволюции посредством естественного отбора позволяет объяснить все существующее, не прибегая к высшим целям и мистическим силам. Он демонстрирует рождение порядка из хаоса, смысла из бессмысленности и морали из животных инстинктов. Принцип эволюции – это новый способ мышления, позволяющий понять, как самые возвышенные феномены культуры возникли и развились исключительно в силу биологических способностей. «Опасная» идея Дарвина разрушает представление о человеческой исключительности, но взамен дает людям возможность по-настоящему познать самих себя. Книгу перевела М. Семиколенных, кандидат культурологии, научный сотрудник РХГА.

Дэниел К. Деннетт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Зарубежная образовательная литература / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
История Византии
История Византии

Византийская империя. «Второй Рим».Великое государство, колыбель православия, очаг высокой культуры?Тирания, безжалостно управлявшая множеством покоренных народов, давившая в подданных всякий намек на свободомыслие и жажду независимости?Путешественники с восхищением писали о блеске и роскоши «Второго Рима» и с ужасом упоминали о жестокости интриг императорского двора, о многочисленных религиозных и политических распрях, терзавших империю, о феноменально скандальных для Средневековья нравах знатных византийцев…Византийская империя познала и времена богатства и могущества, и дни упадка и разрушения.День, когда Византия перестала существовать, известен точно: 29 мая 1453 года.Так ли это? Что стало причиной падения Византийской империи?Об этом рассказывает в своей уникальной книге сэр Джон Джулиус Норвич.

Джон Джулиус Норвич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература