Читаем Сборник основных формул по химии для ВУЗов полностью

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса –овая и слова «кислота»: HCOOH – метановая (муравьиная) кислота, CH3COOH – этановая (уксусная) кислота. Для карбоновых кислот характерная структурная изомерия: а) изомерия скелета в углеводородном радикале (начиная с С4); б) межклассовая изомерия, начиная с С2. Возможна цис-транс-изомерия в случае непредельных карбоновых кислот. Электронная плотность π-связи в карбонильной группе смещена в сторону атома кислорода. Вследствие этого у карбонильного углерода создается недостаток электронной плотности, и он притягивает к себе неподеленные пары атома кислорода гидроксильной группы, в результате чего электронная плотность связи О—Н смещается в сторону атома кислорода, водород становится подвижным и приобретает способность отщепляться в виде протона.

В водном растворе карбоновые кислоты диссоциируют на ионы:

R—COOH ↔ R—COО¯ + Н+

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.

Способы получения карбоновых кислот

1. CH3—СCl3 + 3NaOH → CH3—COOH + 3NaCl + Н2O (гидролиз тригалогенопроизводных)

2. R—CHO + [О] → R—COOH (окисление альдегидов и кетонов)

3. CH3—CH=CH2 + CO + Н2O/Н+Ni, р, t→ CH3—CH2—CH2—COOH (оксосинтез)

4. CH3C≡N + 2Н2O/ Н+ → CH3COOH + NH4 (гидролиз нитрилов)

5. CO + NaOH → HCOONa; 2HCOONa + H2SO4 → 2HCOOH + Na2SO4 (получение HCOOH)

Химические свойства карбоновых кислот и их производных

Карбоновые кислоты проявляют высокую реакционную способность и вступают в реакции с различными веществами, образуя разнообразные соединения, среди которых большое значение имеют функциональные производные: сложные эфиры, амиды, нитрилы, соли, ангидриды, гало-генангидриды.

1. а) 2CH3COOH + Fe → (CH3COO)2Fe + Н2 (образование солей)

б) 2CH3COOH + MgO → (CH3COO)2Mg + Н2O

в) CH3COOH + KOH → CH3COОК + Н2O

г) CH3COOH + NaHCO3 → CH3COONa + CO2 + Н2O

CH3COONa + H2O ↔ CH3COOH + NaOH (соли карбоновых кислот гидролизуются)

2. (образование вложных эфиров)

(омыление вложного эфира)

3. (получение хлорангидридов кислот)

4. (разложение водой)

5. CH3—COOH + Cl2 →hv→ Cl—CH2—COOH + HCl (галогенирование в α-положение)

6. HO—CH=O + Ag2O →NH3→ 2Ag + Н2CO32O + CO2) (особенности HCOOH)

HCOOH →t→ CO + Н2O

12. Жиры

Жиры – сложные эфиры глицерина и высших одноатомных карбоновых кислот. Общее название таких соединений – триглицериды. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой С15Н31COOH, стеариновой С17Н35COOH) и ненасыщенных (олеиновой С17Н33COOH, линолевой С17Н31COOH). Жиры состоят главным образом из триглицеридов предельных кислот. Растительные жиры – масла (подсолнечное, соевое) – жидкости. В состав триглицеридов масел входят остатки непредельных кислот.

Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла – соли высших карбоновых кислот и щелочных металлов. Натриевые соли – твердые мыла, калиевые – жидкие. Реакция щелочного гидролиза жиров называется также омылением.

13. Амины

Амины – органические производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. В зависимости от числа углеводородных радикалов различают первичные RNH2, вторичные R2NH, третичные R3N амины. По характеру углеводородного радикала амины подразделяются на алифатические (жирные), ароматические и смешанные (или жирноароматические). Названия аминов в большинстве случаев образуют из названий углеводородных радикалов и суффикса –амин. Например, CH3NH 2 – метиламин; CH3—CH2—NH2 – этиламин. Если амин содержит различные радикалы, то их перечисляют в алфавитном порядке: CH3—CH2—NH—CH3 – ме-тилэтиламин.

Изомерия аминов определяется количеством и строением радикалов, а также положением аминогруппы. Связь N—Н является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи. Третичные амины не образуют ассоциирующих водородных связей. Амины способны к образованию водородных связей с водой. Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается.

Способы получения аминов

1. R—NO2 + 6[Н] → R—NH2 + 2H2O (восстановление нитросоединений)

2. NH3 + CH3I → [CH3N+H3]I¯ →NH3→ CH3NH 2 + NH 4I (алкилирование аммиака)

3. а) С6Н5—NO2 + 3(NH4)2S → С6Н5—NH2 + 3S + 6NH3 + 2H2O (реакция Зинина)

б) С6Н5—NO2 + 3Fe + 6HCl → С6Н5—NH2 + 3FeCl2 + 2Н2O (восстановление нитросоединений)

в) С6Н5—NO2 + ЗН2 →катализатор, t→ C6H5—NH 2 + 2Н2O

4. R—C≡N + 4[H] → RCH2NH2 (восстановление нитрилов)

Перейти на страницу:

Все книги серии Краткий справочник студента

Похожие книги

Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей
Сумма биотехнологии. Руководство по борьбе с мифами о генетической модификации растений, животных и людей

«Сумма биотехнологии» Александра Панчина — это увлекательный научно-популярный рассказ о генетически модифицированных организмах (ГМО), их безопасности и методах создания, а также о других биотехнологиях, которые оказались в центре общественных дискуссий. Из книги вы узнаете все самое интересное о чтении молекул ДНК, возможности клонирования человека, создании химер, искусственном оплодотворении и генетической диагностике, о современных методах лечения наследственных заболеваний с помощью генной терапии, о перспективах продления человеческой жизни и победы над старением. В то же время в книге подробно разобраны популярные в обществе мифы, связанные с внедрением биотехнологий в практику, и причины возникновения ложных опасений.

Александр Панчин , Александр Юрьевич Панчин

Научная литература / Химия / Биология / Прочая научная литература / Образование и наука