Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Подробная история индо-арабских цифр выходит за рамки нашего повествования. Отметим лишь, что свое название они получили по месту происхождения. Удивительно, но на Западе эти цифры и система счисления в целом появились лишь в X веке в «Книге Абака» Леонардо Пизанского (ок. 1170–1250), также известного как Фибоначчи. Индо-арабские цифры распространились в Европе с быстротой молнии, особенно среди торговцев и образованных людей. Расчеты в новой системе счисления перестали быть такими проблематичными благодаря простым правилам умножения и деления. Цивилизация сделала медленный, но важный шаг вперед.

На середине нашего повествования мы впервые встречаем имя Фибоначчи, который в 1220 году вычислил приближенное значение π = 3,141818 в одной из своих работ «Практика геометрии» (Practica geometriae), несколько вольно применив метод Архимеда.

Но не будем забегать вперед. Обратим внимание на фигуру Мухаммеда ибн Муса аль-Хорезми (ок. 780–850 гг.), также называемого аль-Хорезми. От видоизмененного имени аль-Хорезми берет начало термин «алгоритм». Аль-Хорезми является автором «Книги о восполнении и противопоставлении», от арабского названия которой происходит слово «алгебра». Его труды, переведенные на Западе, имели огромнейшее влияние. Аль-Хорезми также рекомендовал использовать значение 3,14 в простых расчетах и 3,1416 — в сложных, например, в астрономии.

Героический образ аль-Хорезми, запечатленный на советской марке 1983 года (аль-Хорезми жил на территории современного Узбекистана).

В 1424 году другой персидский ученый Джамшид ал-Каши (1380–1429) из Самарканда рассчитал значение 2π с точностью до 9 знаков, используя шестидесятиричную систему счисления (в ней числа записываются следующим образом: 1/60 = 0,1; 1/602 = 1/360 = 0,01 и т. д.). После перевода в десятичную систему счисления это соответствует точности в 16 знаков после запятой. Ал-Каши вычислил:

2π = 6 + 16/60 + 59/602 + 28/603 + 1/604 + 34/605 + 51/606 + 46/607 + 14/608 + 50/609 + …,

используя многоугольники с числом сторон 3∙228. За четверть века до него, в 1400 году, индийский математик Мадхава из Сангамаграма (ок. 1350 — ок. 1425) вычислил π с точностью до 13 знаков. Кроме того, расчеты Мадхавы отличаются оригинальностью: в них впервые используется бесконечный ряд для оценки значения π. Формула Мадхавы позднее стала известна в западном мире как «ряд Лейбница», но Мадхава открыл ее намного раньше:

π/4 = 1–1/3 + 1/5 — 1/7 + 1/9 — …

Этот ряд сходится очень медленно. Чтобы получить более или менее приемлемый результат, необходимо сложить тысячи членов ряда. Мадхава использовал этот ряд в преобразованном виде:

π = √12∙[1 — (1/3∙3) + (1/5∙32) — (1/7∙33) +…]

что и помогло ему вычислить π.

Немецкий ученый Валентин Отто (ок. 1550–1603), ярый последователь Коперника, в 1573 году рекомендовал использовать π = 355/113 ~ 3,1415929… Однако это не идет ни в какое сравнение с результатами, полученными спустя некоторое время с помощью передовых способов вычисления, а не просто путем аккуратно проведенных расчетов. Французский математик Франсуа Виет вычислил девятый знак числа π обычным способом, используя метод Архимеда и многоугольник с 393216 (6∙216) сторонами. Хотя ему и удалось вывести важную формулу, связанную с π, он не смог применить ее из-за сложных вычислений: его формула включает вычисление квадратного корня из квадратного корня числа. На современном языке математики формула Виета записывается следующим образом:

Вывод этой и других формул подробно объясняется в главе 4.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги