Подробная история индо-арабских цифр выходит за рамки нашего повествования. Отметим лишь, что свое название они получили по месту происхождения. Удивительно, но на Западе эти цифры и система счисления в целом появились лишь в X веке в «Книге Абака» Леонардо Пизанского (ок. 1170–1250), также известного как Фибоначчи. Индо-арабские цифры распространились в Европе с быстротой молнии, особенно среди торговцев и образованных людей. Расчеты в новой системе счисления перестали быть такими проблематичными благодаря простым правилам умножения и деления. Цивилизация сделала медленный, но важный шаг вперед.
На середине нашего повествования мы впервые встречаем имя Фибоначчи, который в 1220 году вычислил приближенное значение π = 3,141818 в одной из своих работ «Практика геометрии» (Practica geometriae), несколько вольно применив метод Архимеда.
Но не будем забегать вперед. Обратим внимание на фигуру Мухаммеда ибн Муса аль-Хорезми (ок. 780–850 гг.), также называемого аль-Хорезми. От видоизмененного имени аль-Хорезми берет начало термин «алгоритм». Аль-Хорезми является автором «Книги о восполнении и противопоставлении», от арабского названия которой происходит слово «алгебра». Его труды, переведенные на Западе, имели огромнейшее влияние. Аль-Хорезми также рекомендовал использовать значение 3,14 в простых расчетах и 3,1416 — в сложных, например, в астрономии.
В 1424 году другой персидский ученый Джамшид ал-Каши (1380–1429) из Самарканда рассчитал значение 2π с точностью до 9 знаков, используя шестидесятиричную систему счисления (в ней числа записываются следующим образом: 1/60 = 0,1; 1/602 = 1/360 = 0,01 и т. д.). После перевода в десятичную систему счисления это соответствует точности в 16 знаков после запятой. Ал-Каши вычислил:
2π = 6 + 16/60 + 59/602 + 28/603 + 1/604 + 34/605 + 51/606 + 46/607 + 14/608 + 50/609 + …,
используя многоугольники с числом сторон 3∙228. За четверть века до него, в 1400 году, индийский математик Мадхава из Сангамаграма (ок. 1350 — ок. 1425) вычислил π с точностью до 13 знаков. Кроме того, расчеты Мадхавы отличаются оригинальностью: в них впервые используется бесконечный ряд для оценки значения π. Формула Мадхавы позднее стала известна в западном мире как «ряд Лейбница», но Мадхава открыл ее намного раньше:
π/4 = 1–1/3 + 1/5 — 1/7 + 1/9 — …
Этот ряд сходится очень медленно. Чтобы получить более или менее приемлемый результат, необходимо сложить тысячи членов ряда. Мадхава использовал этот ряд в преобразованном виде:
π = √12∙[1 — (1/3∙3) + (1/5∙32) — (1/7∙33) +…]
что и помогло ему вычислить π.
Немецкий ученый Валентин Отто (ок. 1550–1603), ярый последователь Коперника, в 1573 году рекомендовал использовать π = 355/113 ~ 3,1415929… Однако это не идет ни в какое сравнение с результатами, полученными спустя некоторое время с помощью передовых способов вычисления, а не просто путем аккуратно проведенных расчетов. Французский математик Франсуа Виет вычислил девятый знак числа π обычным способом, используя метод Архимеда и многоугольник с 393216 (6∙216) сторонами. Хотя ему и удалось вывести важную формулу, связанную с π, он не смог применить ее из-за сложных вычислений: его формула включает вычисление квадратного корня из квадратного корня числа. На современном языке математики формула Виета записывается следующим образом:
Вывод этой и других формул подробно объясняется в главе 4.