Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Далее мы не будем упоминать об ученых Востока, занимавшихся вычислением π, за исключением случаев, когда им удавалось рассчитать π с крайне большой точностью или использовать оригинальные передовые методы.

ГОТФРИД ВИЛЬГЕЛЬМ ЛЕЙБНИЦ (1646–1716)

Коротко изложить самые важные достижения столь разностороннего ученого, как Лейбниц, далеко не просто. Достаточно упомянуть, что полное собрание его сочинений насчитывает 25 томов и 200000 страниц. Этот исключительный ученый родился в Лейпциге. Он занимался адвокатурой, дипломатией, математической логикой, религией, историографией, а также востоковедением, двоичной арифметикой, этикой, физикой, биологией, инженерным делом. Возможно, важнейшим его вкладом в науку является интегральное исчисление и анализ бесконечно малых.

Лейбниц был вундеркиндом, много читал и схватывал все на лету, жил, не стесняясь в средствах, зарабатывая юриспруденцией и дипломатией. Он участвовал в создании первого в истории научного журнала Acta Eruditorum, в котором публиковались многие, если не все его исследования и открытия.

Ему был присущ дар метко обозначать вещи. Так, именно ему мы обязаны введением знака интеграла  и дифференциала (), а также многих выражений, например «жизненная сила». Часть его жизни прошла в спорах с приверженцами Ньютона (за которыми стоял сам великий Ньютон) о том, кто же является подлинным автором исчисления. Сегодня считается, что и Ньютон, и Лейбниц совершили свои открытия независимо друг от друга, а совпадение по времени является случайным. Как математик Лейбниц также внес очень важный вклад в математическую логику, теорию автоматов, двоичную систему счисления и топологию, которую сам ученый называл analysis situs.

В 1673 году Лейбниц изобрел счетную машину, способную производить четыре основных арифметических действия. Годом позже он построил первый работающий образец.

* * *

Ньютон и Лейбниц на протяжении долгого времени вели спор о том, кому же принадлежит авторство исчисления, и можно сказать, что этот спор в итоге вылился в скандал. Не будем вдаваться в суть спора и сосредоточимся на его итогах.

Около 1666 года, в разгар Великого Лондонского пожара сэр Исаак Ньютон, казалось, прохлаждался без работы, поскольку год спустя он говорил, что занялся вычислением числа π «оттого, что тогда мне было решительно нечем заняться». Оставим в стороне мотивы, которыми он руководствовался, и рассмотрим суть его расчетов. Ньютон использовал биномиальную формулу и открыл ряд

с помощью которого точно вычислил 16 знаков π. Как и во многих других случаях, Ньютон не придал этому большого значения и не упомянул об этом ни в одной из своих книг. Этот результат был опубликован после его смерти.

Следовать по пути гения всегда интересно. Проследуем путем, который прошел Ньютон.

Площадь выделенного на рисунке сектора равна π/24, так как он равен одной шестой части окружности. Если вычесть площадь треугольника, равную √(3/32), то получим площадь части сектора, обозначенной 5. Уравнение окружности, показанной на рисунке, выглядит так:

у2 + х2 = х,

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги