Мы не видим никаких закономерностей при подбрасывании монетки, кидании костей, вращении рулеточного колеса. Поэтому мы называем их случайными процессами. До недавних пор мы не видели никаких закономерностей в погоде, вспышках эпидемий, в турбулентном потоке жидкости, поэтому все это мы тоже называли явлениями случайного характера. Оказывается, слово «случайный» здесь описывает разное: порой случайный характер действительно присущ явлению или процессу, а иногда дело попросту в том, что мы слишком невежественны и не понимаем тех или иных закономерностей.
Чуть больше века назад все это казалось довольно просто и определенно. Мол, некоторые природные явления подчиняются законам физики: орбиты планет, движение приливов и т. п. Другие им не подчиняются: скажем, узор градин на садовой дорожке. Первую брешь в стене между порядком и хаосом пробил Адольф Кетле, примерно в 1870 году открывший, что в случайных событиях есть свои статистические закономерности. Позже ученые начали по-настоящему описывать хаос (где поведение систем, кажущееся случайным, на самом деле подчинено строгим законам), что полностью разрушило большие куски этой стены. Каким бы в конечном счете ни оказалось действительное соотношение порядка и хаоса, уже сейчас ясно, что их нельзя воспринимать просто как некие противоположности.
Но нам, похоже, все-таки трудно удержаться от искушения обсуждать процессы, протекающие в реальном мире, либо как упорядоченные, либо как случайные. По-настоящему ли случайна погода – или же в ней есть какие-то закономерности? Действительно ли бросание костей дает череду случайных чисел – или же на самом деле этот процесс чем-то жестко обусловлен? Физики сделали случайность главной основой квантовой механики, науки об очень малом: никто, утверждают они, не в состоянии предсказать, в какой именно момент распадется радиоактивный атом. Но если это так, что же служит спусковым крючком такого события? Откуда атом «знает», когда ему распадаться? Чтобы попытаться ответить на эти вопросы, нужно разобраться, о каком виде случайности мы говорим. Что это – истинное, изначальное свойство реальности или же след наших представлений о ней, того, каким образом мы строим ее модели?
Начнем с самых простых идей. Систему можно назвать случайной, если то, что она сделает в ближайший момент, не зависит от того, что она сделала в прошлом. Если я буду подбрасывать «честную» монетку и у меня 6 раз подряд выпадет орел, на седьмом броске с равной вероятностью может выпасть орел или решка. И наоборот, система считается упорядоченной, если ее предыстория влияет на ее будущее предсказуемым образом. Мы в состоянии предсказать время ближайшего восхода с точностью до каких-то долей секунды, и каждое утро мы оказываемся правы. Стало быть, бросание монетки – процесс случайный, а движение Солнца – нет.
Четкое расписание восходов объясняется строгой геометрией земной орбиты. Статистический рисунок бросания «случайной» монетки более загадочен. Эксперименты показывают, что в долгосрочной перспективе орлы и решки выпадают с одинаковой суммарной частотой (при условии, что монетка «честная»). Если представить вероятность события как долю случаев, когда это событие происходит (при длинной серии опытов), тогда и для орла, и для решки вероятность выпадения составит 1/2. На самом деле у понятия вероятности не совсем такое определение, но здесь мы даем простое следствие из технического определения. Оно называется «законом больших чисел».
То, что в долгосрочной перспективе общее число выпавших орлов и решек оказывается равным, можно назвать чисто статистическим свойством большого количества бросков (см. «Закон средних»). Более глубокий вопрос, с куда более озадачивающим ответом, таков: откуда монетка «знает», что в долгосрочной перспективе она должна выдать столько же орлов, сколько и решек? Ответ таков: если вы как следует вдумаетесь, то поймете, что монетка вовсе не представляет собой случайную систему.
Представим монетку как тонкий круглый диск. Если диск запускается вертикально с известной линейной скоростью и известной быстротой вращения, можно точно вычислить, сколько полуоборотов он совершит, прежде чем упадет на пол и остановится. Если при этом он отскочит от пола, расчет окажется труднее, но все равно в принципе он осуществим. Подбрасываемая монета – система из классической механики. Она подчиняется тем же законам движения и тяготения, благодаря которым так предсказуемы орбиты планет. Почему же монетка непредсказуема?
Предсказуема. В принципе. На практике вы не знаете ни линейную скорость, ни быстроту вращения, а исход броска очень зависит от обоих параметров. Как только вы подбросили монетку, ее судьба уже предопределена (если не учитывать ветер, пробегающую мимо кошку и другие привходящие обстоятельства). Но поскольку вам не известна ни линейная скорость, ни быстрота вращения, вы понятия не имеете, каков будет неизбежный исход броска, даже если вы умеете молниеносно проделывать вычисления в уме.
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное