То же самое и с игральной костью. Ее можно представить себе как подпрыгивающий куб, чье поведение тоже подчинено законам классической механики и описывается определенными уравнениями. Если с достаточной точностью отследить начальное движение кубика и достаточно быстро сделать нужные расчеты, можно совершенно точно предсказать результат. Что-то подобное удалось проделать для рулетки. Точность прогноза здесь меньше (предсказывается, на какой половине колеса остановится шарик), но она достаточно высока, чтобы выиграть, да и результаты предсказаний не должны быть идеальными, чтобы разорить казино.
Следовательно, Альберт Эйнштейн выбрал неверную метафору, когда подверг сомнению случайный характер квантовой механики, отказываясь верить, будто Бог играет в кости. Ему следовало бы в это поверить. А затем он мог бы задаться вопросом, как ведут себя эти игральные кубики, где они расположены и каков реальный источник квантовой «случайности».
У проблемы есть и более глубинный слой. Предсказать исход броска игральной кости трудно не только из-за того, что мы толком не знаем начальных условий броска. Мешает еще и своеобразная природа процесса – хаотическая.
Хаос на самом деле не носит случайного характера. Но точность любых измерений, какие мы можем сделать, имеет пределы, а значит, для нас хаос непредсказуем. В случайной системе прошлое не оказывает влияния на будущее. В хаотической системе прошлое все-таки влияет на будущее, только вот расчеты, которые позволили бы нам оценить величину этого эффекта, чрезвычайно чувствительны по отношению к малейшим ошибкам наблюдения. Каждая изначальная ошибка, пусть даже очень небольшая, затем так стремительно разрастается, что совершенно разрушает прогноз.
С броском монетки что-то похожее: достаточно серьезная ошибка при измерении начальной линейной скорости и начальной быстроты вращения лишит нас возможности заранее узнать результат броска. Но монетка не является «истинно хаотической», поскольку, пока она вращается в воздухе, ошибка растет относительно медленно. В по-настоящему хаотической системе ошибка растет очень быстро – по экспоненте. Острые углы игральной кости, вступающие в дело, когда идеальный математический куб отскакивает от плоской поверхности стола, дают именно такого рода экспоненциальное расхождение. Поэтому игральная кость кажется «случайной» по двум причинам: из-за человеческого незнания начальных условий, как с монеткой, и из-за хаотической, хотя и детерминированной динамики (т. е. в данном случае предопределенной, четко подчиняющейся физическим законам, которые позволяют точно предсказать конкретные результаты).
Все, что я до сих пор говорил, опиралось на ту или иную математическую модель, которую мы выбрали для описания процесса. Но зависит ли (не) случайный характер той или иной физической системы от модели, которую мы используем?
Чтобы ответить на этот вопрос, вспомним первый большой успех применения случайных моделей в физике. Речь идет о статистической механике. Эта теория лежит в основе термодинамики (по сути, физики газов), чье появление в известной степени мотивировалось необходимостью создавать более эффективные паровые двигатели. Какой максимальной эффективности может достичь паровая машина? Термодинамика ставит тут очень четкие и специфические ограничения.
На заре термодинамики главное внимание обращали на «крупномасштабные» переменные – объем, давление, температуру, количество теплоты. Все эти переменные связаны между собой «газовыми законами». К примеру, закон Бойля – Мариотта гласит, что произведение давления газа на его объем постоянно при данной температуре. Закон совершенно детерминистичен: зная объем, можно вычислить давление, и наоборот.
Однако вскоре стало очевидно, что физика газов на атомарном уровне, лежащая в основе газовых законов, носит, в сущности, случайный характер: молекулы газа беспорядочным образом отскакивают друг от друга. Людвиг Больцман первым стал изучать, как это отскакивание молекул (представляемых в рамках его модели как крошечные твердые сферы) соотносится с газовыми законами (и со многим другим). Согласно его теории, классические переменные – давление, объем и температура – представлены как статистические средние, что заставляет предположить присущий системе случайный характер. Обоснованно ли такое предположение?
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное