Бросание монетки и игральной кости в основе своей детерминированы. То же самое касается и системы, состоящей из огромного количества маленьких круглых сфер. В этом космическом бильярде каждый шар подчиняется законам механики. Если известны исходное положение и скорость каждой сферы, последующее движение будет полностью предопределено. Но Больцман и не пытался следить за точным маршрутом каждой сферы. Он сделал допущение, что позиции и скорости сфер носят «статистический» характер, без какой-то склонности к движению в том или ином определенном направлении. Так, давление – это мера усредненной силы, которая возникает, когда шарики отскакивают от внутренней поверхности стенок сосуда, где они находятся, если предположить, что каждая сфера с одинаковой вероятностью двигается в любом направлении.
Статистическая механика описывает движение большого количества сфер статистическими величинами – такими как «среднее». Иными словами, она использует случайную модель на микроуровне, чтобы объяснить детерминированную модель на макроуровне. Корректен ли такой подход?
Да, хотя Больцман этого тогда и не знал. По сути, он сделал два допущения: движение сфер хаотично и хаос этот особого рода – порождающий «среднее состояние», которому можно дать четкое определение. Из этих идей впоследствии вырос целый раздел математики – эргодическая теория. В ходе развития математики гипотеза Больцмана превратилась в широко известную теорему.
Таким образом, произошел удивительный сдвиг точки зрения. Детерминированная модель (газовые законы) усовершенствовали до случайной (с крошечными сферами), а затем эту случайность математически обосновали как следствие детерминированной динамики.
И все-таки носит ли поведение газов случайный характер? Всё зависит опять-таки от точки зрения. Одни аспекты их поведения лучше описываются статистически, другие – детерминировано. Общего ответа нет, все зависит от контекста. И эта ситуация вовсе не является такой уж необычной. При решении некоторых задач (например, при расчетах характеристик воздушных потоков вокруг космического челнока) жидкость или газ можно рассматривать как единое целое, как некий континуум, подчиняющийся определенным законам. В других ситуациях, например при изучении броуновского движения (беспорядочного перемещения частиц взвеси, вызванного столкновениями с атомами), следует принимать в расчет атомарную природу жидкости или газа, и здесь годится больцмановская модель в каком-то из ее современных вариантов.
Итак, в нашем распоряжении две различные модели, между которыми есть математическая связь. Никакая из них не описывает реальность полностью и исчерпывающе, но каждая все-таки дает неплохое ее описание. Бессмысленно было бы утверждать, что реальность сама по себе «случайна» или «не случайна»: случайность – математическая характеристика, отражающая то, как мы описываем систему, а не характеристика системы как таковой.
Значит, в мире нет ничего по-настоящему случайного? Пока мы не разберемся в основах квантового мира, сказать наверняка нельзя. Согласно наиболее распространенным интерпретациям, квантовая механика строится на допущении, что где-то очень глубоко, на субатомном уровне, Вселенная носит по-настоящему случайный характер, и ее нельзя дальше членить на какие-то детерминированные процессы. Тут совсем не как с моделью термодинамической случайности, где участвуют твердые сферы и где статистические свойства объясняются нашим (неизбежным) неведением точного положения и состояния всех этих шариков. Здесь нельзя по принципу аналогии построить какую-то «модель системы в миниатюре» с немногочисленными параметрами, которые, если мы их только узнаем, позволят нам разгадать тайну. Просто не существует никаких «скрытых переменных», чье детерминированное, но хаотическое поведение управляло бы броском квантовой игральной кости. Квантовый мир случаен – и точка. Или?..
В пользу предположения о случайном характере квантового мира явно говорит один математический довод. Еще в 1964 году Джон Белл придумал, как проверить, случайны ли процессы в квантовой механике или же она управляется скрытыми переменными, то есть, по сути, квантовыми свойствами, которые мы пока просто не научились наблюдать. В основу работы Белла легла идея о двух квантовых частицах (таких как электроны), которые после взаимодействия разводятся на огромное расстояние[9]
.Проделайте определенные измерения параметров этих разделенных частиц, и вы сможете определить, что же управляет их свойствами – случайность или скрытые параметры. Ответ на этот вопрос очень важен: он позволит выяснить, способны ли квантовые системы, которые уже взаимодействовали в прошлом, затем влиять на свойства друг друга, даже находясь на противоположных концах Вселенной.
«Удивительный мир» (с) Консорциум Прессы, 1994
Александр Макаров-Кротков , Алексей Буторов , Алексей Вячеславович Буторов , Виктор Прусаков , Михаил Игоревич Костин , Михаил Костин , П. Кресников , Юрий Георгиевич Симаков
Публицистика / Альтернативные науки и научные теории / Прочая научная литература / Образование и наука / Документальное