Читаем Шанс есть! Наука удачи, случайности и вероятности полностью

В течение еще примерно четверти века никто не мог дать удовлетворительный ответ на главный вопрос: почему, скажите на милость, этому закону должно подчиняться такое гигантское количество всевозможных источников чисел? Первый большой шаг вперед удалось сделать в 1961 году. Роджер Пинкхем, математик, работавший тогда в Ратгерском университете (Нью-Брансуик, штат Нью-Джерси), подошел к делу обходным путем, хотя и не без изящества. Он рассуждал так. Предположим, действительно существует некий универсальный закон, которому подчиняются цифры в числах, описывающих природные явления и объекты (площадь бассейнов рек, свойства веществ и т. п.). Тогда такой закон должен работать независимо от используемых единиц измерения. Иными словами, даже обитатели планеты Зоуб, измеряющие площадь в грондеках[15], должны обнаружить точно такое же распределение цифр в данных о бассейнах рек, как и мы, скромно пользующиеся гектарами. Но как такое возможно, если в одном гектаре 87,331 грондека?

А значит, говорит Пинкхем, следует добиться, чтобы на распределение цифр не влиял выбор единиц измерения. Допустим, вам известна выраженная в гектарах площадь бассейна для миллиона рек. Конечно, перевод каждого из этих значений в грондеки изменит каждое отдельное число. Но в целом характер распределения этих чисел не изменится. Это свойство называют инвариантностью по отношению к изменениям масштаба.

Пинкхем математически доказал, что закон Бенфорда действительно обладает инвариантностью по отношению к используемой шкале измерения. Но важнее всего то, что он также продемонстрировал: закон Бенфорда – единственный метод распределения цифр, обладающий таким свойством. Иными словами, любой закон, описывающий частоту встречаемости цифр и претендующий на универсальность, просто обязан оказаться законом Бенфорда.

Работа Пинкхема вызвала бурный рост доверия к закону, побудив и других ученых отнестись к нему серьезно и придумывать возможные сферы его применения. Впрочем, оставался ключевой вопрос: какого рода числа будут следовать закону Бенфорда? Довольно быстро обнаружились два ориентировочных правила. Прежде всего, выборка чисел должна быть достаточно большой, чтобы предсказанные пропорции могли в ней по-настоящему проявиться. Кроме того, числа должны быть свободны от искусственных ограничений: им нужно позволить принимать, в сущности, любое значение, какое им заблагорассудится. К примеру, совершенно бесполезно ожидать, что цены на 10 разных сортов пива будут отвечать закону Бенфорда. Мало того, что выборка чересчур мала: важнее то, что под действием рыночных сил цены вынуждены оставаться в рамках узкого, фиксированного диапазона.

С другой стороны, истинные случайные числа тоже не будут подчиняться закону Бенфорда: все первые цифры таких чисел будут по определению представлены в равных долях (при достаточно большой выборке). Закон Бенфорда относится к числам, занимающим «промежуточное положение» – между жестко ограниченными и совершенно необузданными.

Что же это, собственно, означает? Подробности оставались тайной вплоть до 1996 года, когда математик Теодор Хилл из Технологического института штата Джорджия (Атланта) сумел еще больше углубиться в истоки закона Бенфорда. Он понял, что закон обусловлен многообразием путей, какими задаются ограничения и закономерности для результатов различных видов измерений. В конечном счете все, что мы способны измерить, является результатом того или иного процесса: например, случайных скачков атомов или генетических актов. Математикам давно известно, что разброс значений для каждого такого процесса следует тому или иному базовому математическому правилу. К примеру, данные о росте банковских менеджеров отлично укладываются на колоколообразную кривую (гауссиану), среднесуточные температуры воздуха растут и падают волнообразно, а силу и частоту землетрясений связывает логарифмическая зависимость.

А теперь представьте, что вы произвольным образом выхватываете охапки данных из кучи всевозможных распределений такого рода. Хилл доказал: чем больше таких чисел вы будете выхватывать, тем ближе цифры этих чисел будут соответствовать одному весьма специфическому закону. Речь идет о законе распределения распределений, то есть о некоем «универсальном распределении». Его математическая форма представляет собой, как показал Хилл… все тот же закон Бенфорда.

Теорема Хилла детально объясняет поразительную вездесущность закона Бенфорда. Ну да, числа, описывающие некоторые явления, находятся под контролем какого-то одного распределения (скажем, той же гауссианы). Но гораздо больше таких, чье поведение определяется случайной смесью всевозможных распределений. Подобные числа описывают самые разные вещи – от данных переписи населения до цен на акции. Если теорема Хилла верна, это означает, что цифры в этих данных обязаны следовать закону Бенфорда. И, как показывает грандиозное исследование самого Бенфорда (и изыскания многих его последователей), так действительно и происходит.

Перейти на страницу:

Все книги серии Антология научно-популярной литературы

Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни
Одиноки ли мы во Вселенной? Ведущие учёные мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино. Для написания книги профессор Джим Аль-Халили собрал команду ученых и мыслителей, мировых лидеров в своих областях, в числе которых такие звезды, как Мартин Рис, Иэн Стюарт, Сэт Шостак, Ник Лейн и Адам Резерфорд. Вместе они представляют весь комплекс вопросов и достижений современной науки в этом поиске, и каждый из них вносит свой уникальный вклад.

Джованна Тинетти , Йэн Стюарт , Моника Грейди , Ник Лэйн , Сара Сигер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука