Вверху — схема взрывомагнитного генератора частоты (ВМГЧ).
1 — медная труба;
2 — взрывчатое вещество;
3 — обмотка;
4 — высоковольтный конденсатор;
Ниже — осциллограммы: а — производной тока ВМГЧ («рыба» — на жаргоне разработчиков электромагнитных боеприпасов); б — производной тока в спирали с обмоточными данными, точно соответствующими ВМГЧ, но с индуктивной нагрузкой вместо малоемкостной; в — полуволн производной тока ВМГЧ, снятая на значительно более быстрой развертке, чем осциллограмма «а». Закон усиления тока в спирали, замыкаемой трубой, известен из трудов А. Сахарова. На осциллограмме «в» видно, что форма полуволн ломаная, несинусоидальная, а значит, в разложении существенна доля быстрых гармоник. Делают форму колебаний такой бешеные «впрыскивания» тока при сжатии создаваемого им поля (обе эти величины жестко связаны). Луч осциллографа слишком медлителен, чтобы воспроизвести скачки тока, достоверна лишь огибающая — линия, соединяющая токовые амплитуды. Она служит для их нормировки, когда ломаную кривую тока представляют как сумму уже «чистых» синусоид (гармоник). Остальное понятно: для каждой гармоники тока известной частоты и амплитуды вычисляют мощность излучения через спиральную антенну — витки обмотки, в данный момент еще не закороченные ударом трубы. Доля гармоник с частотами от сотен до десятков тысяч мегагерц (много большими частоты «несущей» волны) к концу работы существенно возрастает (красный график справа), растут и потери на излучение, «подсаживая» ток.
Пиковая мощность излучения ВМГЧ меньше, чем у ЦУВИ, но время генерации (десятки микросекунд) на четыре порядка больше и энергия РЧЭМИ даже выше.
5.12
Поражающее
Новыми в тех испытаниях были и мишени: мины, вернее, их неконтактные взрыватели, реагирующие на магнитное поле проезжающей мимо бронетехники. Среди них были как современные, так и разработанные еще в начале 60-х годов, но проверенные в боях: вьетконговцы применяли их против американской армии. Мины очаровали всех: они были полностью автономны (питание — от батареек) и легко проверялись постоянным магнитом, а значит, не требовали осциллографирования эффектов облучения и использования для этого кабелей, кои не переводившиеся брехунки по-прежнему трактовали как «антенны», наличие которых делало результаты «недостоверными». Мины размещали по всем азимутам в пределах до полусотни метров от точки подрыва ВМГЧ, после которого они в течение 20–30 минут не реагировали на близкие пассы сильного магнита. За это время через минное поле мог пройти танковый батальон. Правда, затем облученные мины оживали и срабатывали от малейшего прикосновения и без магнита, а иногда — вообще без видимой причины. Даже на спор безнаказанно не удавалось, повернув ключ на корпусе мины, обесточить ее: разъяренное устройство реагировало на такие попытки хлопком контрольного детонатора. Через час-другой чувствительность мин вновь приближалась к штатной. В этих опытах был достоверно зафиксирован эффект, поучивший название «временного ослепления»
— мишень выводилась из строя не «навсегда», а на время, достаточное, чтобы сорвать выполнение ею боевой задачи. Несомненно, нечто подобное произошло и с артиллерийскими взрывателями в опытах 1986 года, к тому же для них достаточная длительность такого эффекта должна бы быть много меньшей, потому что время полета снаряда составляет не десятки минут, а десятки секунд. Кратковременный выход из строя, вероятно, был бы зафиксирован и на расстояниях значительно больших, чем полсотни метров, но конечно, в том случае, если взрыватели были бы проверены сразу после опыта, а не спустя несколько дней.
Одна из основ электродинамики — теорема взаимности: любое устройство принимает волны данной частоты с данного направления тем эффективнее, чем эффективнее оно излучает на данной частоте в данном направлении (а излучает любая электроника, даже и не предназначенная для этого). Так, радар принимает\излучает остронаправленно только на «своей» частоте (правда, боковых «лепестков» избежать все равно нельзя). Чем больше частоты воздействующего излучения отличаются от рабочей, тем более вырождается диаграмма (рис. 5.24): число максимумов растет, но их отличия от минимумов уменьшаются.
Диаграмма излучения/приема, типичная для радиолокатора: а) остронаправленная, для рабочей частоты; б) для частот, на порядок отличающихся от рабочей.