Простота «вырожденной» диаграммы обманчива, потому что иллюстрирует интегральную эффективность приема. Но в достаточно сложном электронном устройстве функционирует множество контуров и у каждого из них есть своя резонансная частота, зачастую существенно отличающаяся от рабочей частоты устройства. Поэтому минимаксы дня отдельных частот существуют и взаимодействие их с такими же в диаграмме направленности источника сверхширокополосного излучения приводит, при его поворотах, к калейдоскопу эффектов в мишени, где каждая последующая «картинка» не похожа на предшествующую.
Казалось бы, самый выгодный вариант — поражение цели излучением ее рабочей частоты, которое преобразуется в приемных трактах очень эффективно. Громогласные авансы дальностей поражения в километры и более это подразумевают, хотя обычно умалчивается о том, что, например, дня ракет с нерадиолокационными головками наведения этот метод не обеспечивает никаких преимуществ. Что же касается целей с радиолокационными головками самонаведения, то уровни их поражения излучением их же рабочей частоты минимальны, это правда, но такая, что «хуже всякой лжи». Для этого надо очень точно совместить пучок РЧЭМИ и крайне узкий «главный лепесток» антенны головки, иначе дальность поражения упадет даже не в разы, а на порядки. Кроме того, борьба с управляемыми ракетами на их собственных рабочих частотах потребует воспитания военнослужащих в духе кодекса Ьусидо[113]: «ослепить» в этой ситуации можно лишь ракету, «смотрящую прямо в глаза» (остальные придется пропустить).
Облучать «со стороны» бесполезно: в главный лепесток попасть нельзя. Даже и ослепленную в нескольких километрах от позиции, но летящую с исправными боевой частью и ударным взрывателем ракету следует «ждать в гости» спустя секунды и промах ее по ранее захваченной цели будет небольшим (рис. 5.25).
Поражение РЛС наводящейся на ее излучение авиационной ракетой. Ракета может «захватить» как главный лепесток диаграммы направленности РЛС, так и один из боковых.
Можно, конечно, восславить «безумство храбрых», но, скорее всего, каждый из восславленных предпочел бы в этой ситуации стрелять ЭМБП. Во-первых, сделать это можно, наплевав ради безопасности на рыцарские манеры, «из-за угла»; во-вторых, что более важно, дальность стрельбы определяется возможностями носителя ЭМБП, соответственно, и цель может быть выведена из строя на большей дальности, а значит — менее вероятно попадание уже неуправляемой ракеты в обороняемый объект.
Теперь попытаемся представить и тяжкую долю тех, кто сам оказался целью РЧЭМИ: кто в страде боевой трудился на, может, и не столь героических, но от этого не менее важных постах операторов РЛС.
Любое электронное устройство на полупроводниковой элементной базе может быть выведено из строя, если только плотность потока мощности воздействующего РЧЭМИ достаточно высока, но пока не известны модели, адекватно описывающие реакцию сколько-нибудь сложного электронного устройства на облучение сверхширокополосным РЧЭМИ. Может наблюдаться кумуляция эффектов и/или самопроизвольное восстановление некоторых схем спустя время от нескольких миллисекунд до часов и даже дней (т. н. эффект «временного ослепления»). Словом, ни к чему тут будут отработанные расчетами до автоматизма навыки замены вышедшего из строя блока исправным: сначала предстоят мучительные раздумья, какой же из блоков надо заменить, а это непросто, особенно — во время боя.
Особенности сверхширокополосного излучения — распространение по всем направлениям от источника и прием целью со всех направлений
— просто-таки горланят об областях военного применения: в боеприпасах, разрывы которых вероятны на любых направлениях относительно цели. Правда, на больших расстояниях, когда воздействующие плотности мощности или энергии РЧЭМИ близки к минимальным эффективным значениям, функциональное поражение становится вероятностным, зависящим от расположения точки подрыва ЭМБП. Но ведь и дня осколков, с увеличением дистанции от подорванного боеприпаса, сплошное поражение целей вырождается в вероятностное.