Сверху — спектрометрические блоки, каждый из которых предназначен для измерения спектральной плотности РЧЭМИ в очень узком частотном диапазоне. Снизу — осциллограмма сигнала с такого блока.
Казалось бы, восстановить весь спектр можно и по одной точке, если теоретическая модель достаточно надежна, а спектрометр — точен. Эта иллюзия опровергалась в каждом опыте: для совершенно идентичных сборок показания спектрометров отличались иногда в разы, что никак нельзя было объяснить разбросом мощности генерируемого РЧЭМИ в пределах очень узкого диапазона измерений. Причина была другая: поскольку расстояние от точки подрыва до прибора было значительным, а полоса пропускания — узка, совершенно незаметный, неконтролируемый поворот сборки по сравнению с предшествовавшим опытом приводил к тому, что в антенну спектрометра «светили» другие лепестки: попадало излучение, характеризующееся отличной от предшествующей совокупностью частот и интенсивностей.
Дело в том, что для различных длин волн имеются благоприятные и неблагоприятные направления излучения. Если «завить» проводник в петлю (изготовить магнитный диполь), то, в зависимости от расположения на нем минимаксов токовой волны, вблизи будут наблюдаться и минимаксы магнитного поля и излучения. Число минимаксов будет зависеть от соотношения длин: проводника, из которого изготовлен диполь и токовой волны, причем, чем большее число минимаксов тока укладывается на длине диполя, тем больше число «лепестков» излучения.
Проиллюстрируем это простейшее качественное описание (рис. 5.20). Цифры под диаграммами — отношения размера петли-антенны к длине волны, а длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения. Но каждая из этих диаграммы приведена для случая одной токовой волны, а если этих волн несколько? Наложите друг на друга хотя бы четыре диаграммы рис. 5.20, длины волн для которых различаются в пределах всего-то одного порядка! А ведь даже в узком диапазоне измерений спектрометра регистрируется излучение мириадов гармоник. Отражение от земли еще более усложняет распределение.
Выход был один — набирать обширную статистику опытов. Нечего и говорить, что стоил этот процесс недешево.
Сверху — зависимость пространственного распределения излучения простейшего диполя от его размера и длин излучаемых волн (цифры под диаграммами — отношения этих величин, длина ординаты, проведенной из центра любой из диаграмм, пропорциональна плотности потока энергии в направлении ее проведения). Художники (особенно — американские) часто изображают поражение целей РЧЭМИ как удары молнией. Хотя, конечно, РЧЭМИ невидимо, да и пробоя воздуха всеми средствами стараются избежать, достоверность часто приносят в жертву зрелищности, как это сделала редакция журнала Aviation Week, в иллюстрации потока изотропного излучения, формируемого взрывным источником (снизу).
… Опыт готовят долго, но вот датчики и кабели подсоединены, и всех загнали в бункер. Кнопка нажата; на взрыв не смотрят, это опасно. Видна отраженная от стен вспышка. Через доли секунды воздух на мгновение становится тугим и бьет по ушам. Близкая детонация разгоняет соломинку так, что она втыкается в сталь.
Ударная волна сожмет самую прочную сталь, а следующая за ней волна разрежения «растащит» стальной цилиндр, превратив его в подобие полена, разваленного колуном (рис. 5.21), причем внутри «полена» сохранится структура, напоминающая древесные волокна. На дистанции около метра от взрыва поток газов до песчинки счищает почву с корня дерева (иногда этим пользуются, оставляя вблизи заряда «сувениры»; при инструктаже невредно напомнить, что так же чисто могут быть «обдуты» и мышцы с кисти руки). Наконец, гром взрыва умирает, сделав слышным шелест летящих осколков — остатков того, что еще несколькими мгновениями ранее было генератором, собранным вашими руками. Первый взгляд — на осциллографы: есть ли сигналы от датчиков тока, от спектрометров. Потом все бегут к мишеням…
…Внешность ЦУВИ, испытанных в этой серии, изменилась разительно — теперь это было компактные, полностью автономные, вполне подходящие по габаритам для боеприпасов устройства (рис. 5.22). Импульс тока «выжали» из ферромагнитного генератора (ФМГ) — при ударной демагнетизации пластин из электротехнического железа. ФМГ впервые был разработан во ВНИИЭФ и адаптирован для применения в ЦУВИ. Каждую пластину набора надо изолировать (чтобы поле «выходило» по изоляции в обмотку, а не растрачивало свою энергию на нагрев металла вихревыми токами), и, кроме того, образовать из сложенных пластин конус (чтобы труба одновременно ударила по всем ним), для чего используются клинья из бронзы. Сложный ФМГ работал не очень стабильно, но с одного кубического сантиметра набора пластин удалось получить до 0,5 Дж энергии токового импульса!
Стальной цилиндр, «разваленный» волной сжатия и последовавшей разгрузкой.