Допустим, до столкновения первого самолета с башней наши расчеты вероятности террористической атаки на высотные здания Манхэттена составляли лишь 1 шанс из 20 тыс., или 0,005 %. Однако мы также должны были считать достаточно низкой вероятность ситуации, при которой самолет столкнулся бы с башней Всемирного торгового центра по ошибке. Эта цифра может быть рассчитана эмпирически. За период длительностью 25 тыс. дней до событий 11 сентября, в течение которых осуществлялись полеты над Манхэттеном, произошло всего два подобных случая{576}
: столкновение с Эмпайр-стейт-билдинг в 1945 г. и с башней на Уолл-стрит, 40, в 1946 г. Следовательно, возможность подобного инцидента составляла примерно 1 шанс из 12 500 в любой случайный день. Если по этим цифрам сделать расчеты с использованием теоремы Байеса (табл. 8.3a), то вероятность террористической атаки повышалась с 0,005 до 38 % в момент столкновения первого самолета со зданием.Таблица 8.3а.
Пример расчета вероятности террористической атаки по теореме БайесаОднако идея, заложенная в теорему Байеса, заключается в том, что мы не корректируем свои расчеты вероятности только один раз. Мы делаем это постоянно по мере появления новых свидетельств. Таким образом, наша апостериорная вероятность террористической атаки после столкновения первого самолета, равная 38 %, становится нашей
И если вы еще раз проведете расчеты после столкновения второго самолета с башней Всемирного торгового центра, то увидите, что вероятность террористической атаки 99,99 % сменяется почти полной уверенностью в этом событии. Один несчастный случай в яркий солнечный день в Нью-Йорке был крайне маловероятен, но второй практически не мог не произойти (табл. 8.3б), как мы внезапно и с огромным ужасом поняли.
Таблица 8.3б.
Пример расчета вероятности террористической атаки по теореме БайесаЯ сознательно выбрал в качестве примеров довольно сложные случаи – террористические атаки, рак, супружеская измена, – поскольку хочу продемонстрировать масштаб проблем, к решению которых может быть применено байесовское мышление. Теорема Байеса – это не волшебная формула. В ее самой простой формуле, которую мы приводим в этой книге, используются простые арифметические действия по сложению, вычитанию, делению и умножению. Но для того, чтобы она дала нам полезный результат, мы должны снабдить ее информацией, в частности нашими расчетами априорных вероятностей.
Однако теорема Байеса заставляет нас думать о вероятности событий, происходящих в мире, даже когда речь заходит о вопросах, которые мы не хотели бы считать проявлением случайности. Она не требует, чтобы мы воспринимали мир как внутренне,
Проблема ложноположительного срабатывания[108]
Когда мы не можем думать подобно истинным байесовцам, ложноположительное срабатывание начинает представлять собой проблему не только для маммографии, но и для всей науки. В введении я упомянул работу врача-исследователя Джона П. А. Иоаннидиса. В 2005 г. Иоаннидис опубликовал влиятельный труд под названием «Почему самые широко публикуемые выводы исследований неверны»{577}
, в котором процитировал множество статистических и теоретических аргументов, подтверждавших, что (как и следует из названия)Гипотеза Иоаннидиса, как мы уже сказали, кажется одной из немногих истинных. Так, сотрудники компании Bayer Laboratories обнаружили, что не могут повторить в ходе собственных экспериментов до