Однако возможен и альтернативный вариант: вам нужно понимать, какая именно структура лежит в основе системы. По сути, речь идет о создании физической модели определенного участка Вселенной. Для ее создания требуется выполнить значительно больший объем работы, чем при использовании статистического метода. Вы должны более четко понимать первопричины явления. Однако потенциально этот метод способен обеспечить вам более точные результаты.
Модели такого рода уже используются в настоящее время для прогнозирования движения ураганов и доказали свою успешность. Как я уже говорил в главе 4, с 1980-х гг. произошло примерно трехкратное улучшение правильности предсказаний траекторий ураганов, а точка около Нового Орлеана, в которой ураган «Катрина» должен был обрушиться на землю, была предсказана более чем за 48 часов{840}
(хотя к этому прогнозу прислушались не все). Статистические системы в наши дни используются, скорее, как основа, с которой сравниваются другие, более точные прогнозы.Прогнозирование – это не книга готовых рецептов
Критика, которой Армстронг и Грин подвергают климатические прогнозы, связана с их эмпирическим изучением дисциплин, подобных экономике, в которых мало физических моделей такого рода{841}
. Суть причинно-следственной связи понимается достаточно плохо. Слишком амбициозные подходы к прогнозированию в этих областях часто терпели крах, и поэтому Армстронг и Грин полагают, что они окажутся неудачными и в случае прогнозировании климата.Цель любой предсказательной модели состоит в том, чтобы захватить
Когда речь заходит о прогнозировании климата, ситуация становится еще более сомнительной: теория парникового эффекта достаточно сильна, и этот факт поддерживает более комплексную модель. Однако температурные данные переполнены шумом, и это ей мешает. Кто одержит победу? На этот вопрос мы можем дать эмпирический ответ, оценивая успех и неудачу различных видов предсказаний в науке о климате. Однако, как и всегда, самое главное – это то, насколько хорошо предсказания отражают происходящее в реальном мире.
Я бы не хотел сводить процесс прогнозирования до набора простых лозунгов. Конечно, эвристические правила типа «бритвы Оккама» («при прочих равных условиях более простое объяснение всегда лучше более сложного»{842}
) звучат достаточно привлекательно, однако их трудно реализовать на практике. Нам доводилось видеть случаи довольно простых и элегантных предположений (например, в моделях SIR, использовавшихся для прогнозирования всплесков болезней). Однако при этом они слишком наивны, чтобы на их основе можно было сделать толковый прогноз. Также (как в случае предсказания землетрясений) мы видели, как невероятно сложные схемы прогнозирования, отлично смотревшиеся в рамках компьютерной программы, терпели на практике унизительное поражение.Признание, подобное выражению «чем более сложной вы делаете модель, тем хуже становится прогноз», можно сравнить с фразой «не пересолите блюдо». С какого уровня сложности вы начали (сколько соли вы насыпали с самого начала)? Если вы хотите добиться успеха в прогнозировании, то вам нужно заставить себя погрузиться в эксперименты и доверять собственным рецепторам.
Неопределенность в климатических прогнозах
Знать ограничения прогнозов – уже наполовину выиграть сражение, и в этом направлении дела прогнозистов климата идут довольно хорошо. Эти ученые остро осознают суть неопределенности – различные варианты понятий
Тем не менее одно дело – понимать суть неопределенности, и совсем другое – реально правильно ее оценить. Когда дело заходит о политических опросах, мы можем полагаться на достаточно широкую базу данных исторических свидетельств. Если кандидат лидирует по итогам опроса на десять пунктов за месяц до выборов, то насколько велики его шансы на победу? Для получения эмпирического ответа на этот вопрос мы можем изучить данные, полученные при проведении десятков прошедших выборов.