* Полученные результаты позволяют сформировать следующую процедуру декомпозиции при исследовании систем. Вполне очевидно, что переход от графа G (S) к графу G(Sa) или G(Se) означает переход от более сложных задач к более простым. В то же время модель любого системного объекта, в том числе Sa и Se, можно представить в виде модели полной системы и вновь разложить его на модели G(Sa), G(Se) и др. Новая декомпозиция будет означать дальнейшее упрощение задач исследования системы. В то же время при повторной декомпозиции модели, как и при первой., вновь будут определены отношения взаимосвязи между частями модели. Сохраняя отношения взаимосвязи на каждом этапе, можно перейти к системе с более простыми задачами исследования – к «простой» системе, задачи которой разрешимы для исследователя. Затем можно, используя отношения взаимосвязи, перейти к решению задач исходной системы, как к некоторой композиции задач «простых» систем. Возможно, что «простая» система – это система, в которой нецелесообразно выделение дополнительной системы. При такой декомпозиции не нарушается структура и процесс исследуемой системы, производится как бы расслоение системы. Образно можно определить, что это расслоение модели системы, декомпозиция «по толщине», возможная для математических моделей любых систем, когда каждая вершина и ребро графовой модели могут «расслаиваться» на две части в соответствии с определениями (3.3.5) – (3.3.7).
Описанный способ декомпозиции вполне применим и в сочетании с известными методами.
Комплексы систем * Предложенная математическая модель общей системы дает возможность описать систему S,
имеющую столько вариантов построения, сколько разных изделий или продуктов SF (каждое из которых соответствует одной системе целей F) она должна изготавливать или выпускать. Известно в то же время, что системы, как правило, объединяются в комплексы. Определение комплекса можно сформулировать с помощью полученных результатов. * В каждой системе можно выделять, как правило, части (подсистемы) двух видов. В первом случае подсистемы могут образовывать части, предназначенные для изготовления узлов, блоков изделия. В этом случае подсистемой является часть Sai, из этих частей состоит основная система Sa. В другом случае подсистемы могут образовываться на основе частей системы, предназначенных для обеспечения коммуникаций (складирования и транспортирования), т.е. подсистемой явится часть Sei
, из таких частей состоит дополнительная система Se.Тогда можно сформулировать следующее понятие комплекса.
Пусть имеется некоторое множество систем S(k)={S1, S2, ..., Si, ..., Sk}
, (3.3.18)причем каждая из систем Si может быть описана следующим образом
Si = Sai ? Sei,
т.е., как состоящая из основной Sai и дополнительной Sei систем, которые, в свою очередь, можно представить в виде объединений подсистем:
Sai = ? Saij ; Sei = ? Seij .
Множество систем S(k) является комплексом, если каждая из систем Si ? S(k) имеет общую часть S* хотя бы с одной из систем Sl ? S(K), l ? i, и эта общая часть является одной из подсистем вида Saij или Seij .
Алгоритм применения математических моделей.