Читаем Системное программирование в среде Windows полностью

Windows предоставляет четыре других объекта, предназначенных для синхронизации потоков и процессов. Три из них — мьютексы, семафоры и события — являются объектами ядра, имеющими дескрипторы. События используются также для других целей, например, для асинхронного ввода/вывода (глава 14).

Мы начнем обсуждение с четвертого объекта, а именно, объекта критического участка кода CRITICAL_SECTION. В силу своей простоты и предоставляемых ими преимуществ в отношении производительности объекты критических участков кода являются предпочтительным механизмом, если их возможностей достаточно для того, чтобы удовлетворить требования программиста.

В то же время, при этом возникают некоторые проблемы, связанные с производительностью, о чем говорится в главе 9.

Предостережение

Неправильное применение объектов критических участков кода порождает определенные риски. Эти риски, такие, например, как риск блокировки, описываются в этой и последующих главах наряду с изложением методик, предназначенных для разработки надежного кода. Однако прежде всего мы приведем некоторые примеры синхронизации в реалистических ситуациях.

Рассмотрение двух других объектов синхронизации — таймеров ожидания и портов завершения ввода/вывода — отложено до главы 14. Эти типы объектов требуют использования методик асинхронного ввода/вывода Windows, которые описываются в указанной главе.

Объекты критических участковкода

Как уже упоминалось ранее, объект критического участка кода — это участок программного кода, который каждый раз должен выполняться только одним потоком; параллельное выполнение этого участка несколькими потоками может приводить к непредсказуемым или неверным результатам.

В качестве простого механизма реализации и применения на практике концепции критических участков кода Windows предоставляет объект CRITICAL_SECTION.

Объекты CRITICAL_SECTION (CS) можно инициализировать и удалять, но они не имеют дескрипторов и не могут совместно использоваться другими процессами. Соответствующие переменные должны объявляться как переменные типа CRITICAL_SECTION. Потоки входят в объекты CS и покидают их, но выполнение кода отдельного объекта CS каждый раз разрешено только одному потоку. Вместе с тем, один и тот же поток может входить в несколько отдельных объектов CS и покидать их, если они расположены в разных местах программы.

Для инициализации и удаления переменной типа CRITICAL_SECTION используются, соответственно, функции InitializeCriticalSection и DeleteCriticalSection: 

VOID InitializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection) 

VOID DeleteCriticalSection(LPCRITICAL_SECTION lpCriticalSection) 

Функция EnterCriticalSection блокирует поток, если на данном критическом участке кода присутствует другой поток. Ожидающий поток разблокируется после того, как другой поток выполнит функцию LeaveCriticalSection. Говорят, что поток получил права владения объектом CS, если произошел возврат из функции EnterCriticalSection, тогда как для уступки прав владения используется функция LeaveCriticalSection. Всегда следите за своевременной переуступкой прав владения объектами CS; несоблюдение этого правила может привести к тому, что другие потоки будут пребывать в состоянии ожидания в течение неопределенного времени даже после завершения выполнения потока-владельца.

Мы часто будем говорить о блокировании и разблокировании объектов CS, а вхождение в CS будет означать то же, что и блокирование CS. 

VOID EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection)

VOID LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection)

Поток, владеющий объектом CS, может повторно войти в этот же CS без его блокирования; это означает, что объекты CRITICAL_SECTION являются рекурсивными (recursive). Поддерживается счетчик вхождений в объект CS, и поэтому поток должен покинуть данный CS столько раз, сколько было вхождений в него, чтобы разблокировать этот объект для других потоков. Эта возможность может оказаться полезной для реализации рекурсивных функций и обеспечения безопасного многопоточного выполнения функций общих (разделяемых) библиотек.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных