Читаем Системное программирование в среде Windows полностью

Выход из объекта CS, которым данный поток не владеет, может привести к непредсказуемым результатам, включая блокирование самого потока.

Для возврата из функции EnterCriticalSection не существует конечного интервала ожидания; другие потоки будут блокированы на неопределенное время, пока поток, владеющий объектом CS, не покинет его. Однако, используя функцию TryEnterCriticalSection, можно тестировать (опросить) CS, чтобы проверить, не владеет ли им другой поток. 

BOOL TryEnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection) 

Возврат функцией TryEnterCriticalSection значения True означает, что вызывающий поток приобрел права владения критическим участком кода, тогда как возврат значения False говорит о том, что данный критический участок кода уже принадлежит другого потока.

Объекты CRITICAL_SECTION обладают тем преимуществом, что они не являются объектами ядра и поддерживаются в пользовательском пространстве. Обычно, но не всегда, это приводит к дополнительному улучшению показателей производительности. К обсуждению аспектов производительности мы вернемся после того, как ознакомимся с объектами синхронизации, относящимися к ядру.

Настройка спин-счетчика

Обычно, если в результате выполнения функции EnterCriticalSection поток обнаруживает, что объект CS уже принадлежит другому потоку, он входит в ядро и остается блокированным до тех пор, пока не освободится объект CRITICAL_SECTION, что требует определенного времени. Однако в SMP-системах вы можете потребовать, чтобы поток повторил попытку завладеть объектом CS, прежде чем блокироваться, поскольку существует вероятность того, что поток, владеющий CS, выполняется на другом процессоре и в любой момент может освободить CS. Это может оказаться полезным для повышения производительности, если между потоками наблюдается высокая состязательность за право владения единственным объектом CRITICAL_SECTION. Влияние упомянутых факторов на производительность обсуждается далее в этой и последующих главах.

Для настройки счетчика занятости, или спин-счетчика (spin-count), предназначены две функции, одна из которых, SetCriticalSectionSpinCount, обеспечивает динамическую настройку счетчика, а вторая, InitializeCritical-SectionAndSpinCount, выступает в качестве замены функции Initialize-CriticalSection. Настройка спин-счетчика рассматривается в главе 9.

Использование объектов CRITICAL_SECTION для защиты разделяемыхпеременных

Использование объектов CRITICAL_SECTION не вызывает сложностей, и одним из наиболее распространенных способов их применения является обеспечение доступа потоков к разделяемым глобальным переменным. Рассмотрим, например, многопоточный сервер (аналогичный представленному на рис. 7.1), в котором необходимо вести учет следующих статистических данных:

• Общее количество полученных запросов.

• Общее количество отправленных ответов.

• Количество запросов, обрабатываемых в настоящее время всеми потоками сервера. 

Поскольку переменные счетчиков являются глобальными переменными процесса, нельзя допустить того, чтобы одновременно два потока изменяли их значения. Один из методов обеспечения этого, базирующийся на применении объектов CRITICAL_SECTION, иллюстрирует схема, показанная ниже на рис. 8.2. Использование объектов CRITICAL_SECTION демонстрируется на примере программы 8.1, представляющей намного более простую систему, чем серверная.

Объекты CS могут привлекаться для решения задач, аналогичных той, которую иллюстрирует рис. 8.1, где два потока увеличивают значение одной и той же переменной. Приведенный ниже фрагмент кода обеспечивает нечто большее, нежели простое увеличение переменной, поскольку для этого достаточно было бы воспользоваться функциями взаимоблокировки. Обратите внимание на спецификатор volatile, предотвращающий размещение текущего значения переменной оптимизирующим компилятором в регистре, а не в ячейке памяти, отведенной для хранения переменной. Кроме того, в этом примере используется промежуточная переменная; этот необязательный элемент снижает эффективность программы, однако позволяет более отчетливо продемонстрировать, каким образом решается задача, иллюстрируемая рис. 8.1.

CRITICAL_SECTION cs1;

volatile DWORD N = 0, М;

/* N — глобальная переменная, разделяемая всеми потоками. */

InitializeCriticalSection (&cs1);

EnterCriticalSection (&cs1);

if (N < N_MAX) { M = N; M += 1; N = M; }

LeaveCriticalSection (&cs1);

DeleteCriticalSection (&cs1);

На рис. 8.2 представлена одна из возможных последовательностей выполнения программы для случая, изображенного на рис. 8.1, и продемонстрировано, каким образом объекты CS упрощают решение проблемы синхронизации.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных