Читаем Системное программирование в среде Windows полностью

Прежде всего, мы попытаемся количественно оценить влияние объектов синхронизации на производительность, и сравним между собой объекты CRITICAL_SECTION и мьютексы. В программе statsMX.c (программа 9.1) для синхронизации доступа к специфической для каждого потока структуре данных используется мьютекс. Программа statsCS.c, листинг которой здесь не приводится, но его можно найти на Web-сайте книги, делает точно то же, но с использованием объекта CRITICAL_SECTION, тогда как в программе stats IN. с для этого привлекаются функции взаимоблокировки (interlocked functions). Наконец, в программе statsNS.с, которая также здесь не приводится, синхронизация вообще не используется; оказывается, в данном примере можно вообще обойтись без синхронизации, поскольку каждый рабочий поток обращается к собственной уникальной области памяти. Некоторые предостережения по этому поводу приведены в конце данного раздела. В реальных программах количество рабочих потоков может быть неограниченным, однако для простоты в программе 9.1 обеспечивается поддержка 64 потоков.

Описанная совокупность программ не только позволяет оценить зависимость производительности от выбора конкретного типа объекта синхронизации, но и говорит о следующих вещах:

• При тщательном проектировании программы в некоторых случаях можно вообще обойтись без использования синхронизации. 

• В простейших ситуациях, например, когда требуется инкрементировать значение совместно используемой переменной, достаточно использовать функции взаимоблокировки.

• В большинстве случаев использование мьютексов обеспечивают более высокое быстродействие программы по сравнению с использованием объектов CS.

• Обычная методика заключается в определении структуры данных аргумента потока таким образом, чтобы она содержала информацию о состоянии, которая должна поддерживаться потоком, а также указатель на мьютекс или иной объект синхронизации.

Программа 9.1. statsMX: поддержка статистики потоков

/* Глава 9. statsMX.c */

/* Простая система "хозяин/рабочий", в которой каждый рабочий поток */

/* информирует главный поток о результатах своей работы для их отображения.*/

/* Версия, использующая мьютекс. */

#include "EvryThng.h"

#define DELAY_COUNT 20

/* Использование: statsMX nthread ntasks */

/* Запускается "nthread" рабочих потоков, каждой из которых поручается */

/* выполнение "ntasks" единичных рабочих заданий. Каждый поток сохраняет*/

/* информацию о выполненной работе в собственной неразделяемой ячейке */

/* массива, хранящего данные о выполненной потоком работе. */

DWORD WINAPI worker(void *);

typedef struct _THARG {

 int thread_number;

 HANDLE *phMutex;

 unsigned int tasks_to_complete;

 unsigned int *tasks_complete;

} THARG;

int _tmain(DWORD argc, LPTSTR argv[]) {

 INT tstatus, nthread, ithread;

 HANDLE *worker_t, hMutex;

 unsigned int* task_count, tasks_per_thread;

 THARG* thread_arg;

 /* Создать мьютекс. */

 hMutex = CreateMutex(NULL, FALSE, NULL);

 nthread = _ttoi(argv[1]);

 tasks_per_thread = _ttoi(argv[2]);

 worker_t = malloc(nthread * sizeof(HANDLE));

 task_count = calloc(nthread, sizeof(unsigned int));

 thread_arg = calloc(nthread, sizeof(THARG));

 for(ithread = 0; ithread < nthread; ithread++) {

  /* Заполнить данными аргумент потока. */

  thread_arg[ithread].thread_number = ithread; 

  thread_arg[ithread].tasks_to_complete = tasks_per_thread;

  thread_arg[ithread].tasks_complete = &task_count[ithread];

  thread_arg[ithread].phMutex = &hMutex

  worker_t[ithread] = (HANDLE)_beginthreadex (NULL, 0, worker, &thread_arg[ithread], 0, &ThId);

 }

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных