Читаем Системное программирование в среде Windows полностью

Модель "хозяин/рабочий", во всех ее вариациях, является одной из наиболее популярных моделей многопоточного программирования, а программа 8.2 представляет простую модель "производитель/потребитель", являющуюся частным случаем более общей конвейерной модели (pipeline model).

В другом важном частном случае имеется один главный поток, который производит единичные рабочие задания (work units) для ограниченного количества рабочих потоков и помещает их в очередь. Такая методика может оказаться полезной при создании масштабируемого сервера с большим количеством клиентов (число которых может достигать тысячи и более), когда возможность выделения независимого рабочего потока для каждого клиента весьма сомнительна. В главе 14 задача создания масштабируемого сервера обсуждается в контексте портов завершения ввода/вывода.

В конвейерной модели каждый поток или группа потоков определенным образом обрабатывает единичные задания, например, сообщения, и передает их другим потокам для дальнейшей обработки. Аналогом многопоточного конвейера может служить производственная сборочная линия. Идеальным механизмом реализации конвейера являются очереди.

В программе 10.5 (ThreeStage.c) предусмотрено создание нескольких этапов производства и потребления, на каждой из которых поддерживается очередь рабочих заданий, подлежащих обработке. Каждая очередь имеет ограниченную, конечную длину. Всего существует три конвейерных ступени, соединяющих четыре этапа обработки. Программа имеет следующую структуру:

• Производители (producers) периодически создают единичные сообщения, дополненные контрольными суммами, используя для этого ту же функцию, что и в программе 8.2, если не считать того, что в каждом сообщении содержится дополнительное поле адресата, указывающее поток потребителя (consumer), для которой предназначено это сообщение, причем каждый производитель связывается только с одним потребителем. Количество пар "производитель/потребитель" задается в виде параметра командной строки. Далее производитель посылает одиночное сообщение передающему потоку (transmitter), помещая его в очередь передачи сообщений. Если очередь заполнена, производитель ждет, пока ее состояние не изменится.

• Передающий поток объединяет имеющиеся единичные сообщения (но не более пяти за один раз) и создает одно передаваемое сообщение, которое содержит заголовок и ряд единичных сообщений. Затем передающий поток помещает каждое передаваемое сообщение в очередь приема сообщений (receiver), блокируясь, если очередь заполнена. В общем случае передатчик и приемник могут связываться между собой через сетевое соединение. Произвольно выбранное здесь значение коэффициента блокирования (blocking factor), равное 5:1, легко поддается регулировке. 

• Принимающий поток обрабатывает единичные сообщения, входящие в состав каждого передаваемого сообщения, и помещает каждое из них в соответствующую очередь потребителя, если она не заполнена.

• Каждый поток потребителя получает одиночные сообщения по мере их поступления и записывает сообщение в файл журнала регистрации.

Блок-схема системы представлена на рис. 10.1. Обратите внимание, что эта система моделирует сетевое соединение, в котором сообщения, относящиеся к различным парам "отправитель/получатель" объединяются и передаются по общему каналу связи. 

Рис. 10.1. Многоступенчатый конвейер

В программе 10.5 предложен вариант реализации, в котором используются функции очереди из программы 10.4. Функции генерации и отображения сообщений здесь не представлены, но они взяты из программы 8.1. При этом, наряду с контрольными суммами и данными, в блоки сообщений введены поля производителя и адресата.

Программа 10.5. ThreeStage.с: многоступенчатыйконвейер 

/* Глава 10. ThreeStage.с */

/* Трехступенчатая система производитель/потребитель. */

/* Использование: ThreeStage npc goal. */

/* Запустить "npc" пар потоков производителя и потребителя. */

/* Каждый производитель должен сгенерировать в общей сложности */

/* "goal" сообщений, каждое из которых снабжается меткой, указывающей */

/* потребителя, для которого оно предназначено. */

/* Сообщения отправляются "передающему потоку", который, прежде чем */

/* отправить группу сообщений "принимающему потоку", выполняет некоторую*/

/* дополнительную обработку. Наконец, принимающий поток отправляет сообщения потокам потребителя. */

#include "EvryThng.h"

#include "SynchObj.h"

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных