Читаем Системное программирование в среде Windows полностью

 if (q_destroyed(q)) return 1;

 /* Освободить все ресурсы, созданные вызовом q_initialize. */

 WaitForSingleObject(q->q_guard, INFINITE);

 q->q_destroyed = 1;

 free(q->msg_array);

 CloseHandle(q->q_ne);

 CloseHandle(q->q_nf);

 ReleaseMutex(q->q_guard);

 CloseHandle(q->q_guard);

 return 0;

}

DWORD q_destroyed(queue_t *q) {

 return (q->q_destroyed);

}

DWORD q_empty(queue_t *q) {

 return (q->q_first == q->q_last);

}

DWORD q_full(queue_t *q) {

 return ((q->q_last – q->q_first) == 1 || (q->q_first == q->q_size-l && q->q_last == 0));

}

DWORD q_remove(queue_t *q, PVOID msg, DWORD msize) {

 char *pm;

 pm = (char *)q->msg_array;

 /* Удалить наиболее давнее ("первое") сообщение. */

 memcpy(msg, pm + (q->q_first * msize), msize);

 q->q_first = ((q->q_first + 1) % q->q_size);

 return 0; /* Ошибки отсутствуют. */

}

DWORD q_insert(queue_t *q, PVOID msg, DWORD msize) {

 char *pm;

 pm = (char *)q->msg_array;

 /* Добавить новое ("последнее") сообщение. */

 if (q_full(q)) return 1; /* Ошибка – очередь заполнена. */

 memcpy(pm + (q->q_last * msize), msg, msize);

 q->q_last = ((q->q_last + 1) % q->q_size);

 return 0;

} 

<p>Комментарии по поводу функций управления очередью с точки зрения производительности</p>

В приложении В представлены данные, характеризующие производительность программы 10.5, в которой используются функции управления очередью. Приведенные ниже замечания по поводу различных факторов, которые могут оказывать влияние на производительность, основываются на этих данных. Программные коды упоминаемых ниже альтернативных вариантов реализации находятся на Web-сайте книги.

• В данной реализации используется широковещательная модель ("вручную сбрасываемое событие/PulseEvent"), обеспечивающая поддержку общего случая, когда один поток может запрашивать или создавать несколько сообщений. Если такая общность не требуется, можно использовать сигнальную модель ("автоматически сбрасываемое событие/SetEvent"), которая, к тому же, обеспечит значительно более высокую производительность, поскольку для тестирования предиката будет освобождаться только один поток. На Web-сайте находится файл QueueObj_Sig.с, содержащий исходный код, в котором вместо широковещательной модели используется сигнальная модель.

• Использование для защиты объекта очереди объекта CRITICAL_SECTION вместо мьютекса также может привести к повышению производительности. Однако в этом случае вместо функции SignalObjectAndWait следует использовать функцию EnterCriticalSection с последующим ожиданием события. Этот альтернативный подход иллюстрируется двумя файлами — QueueObjCS.с и QueueObjCS_Sig.с, находящимися на Web-сайте книги.

• На Web-сайте находятся два других файла с исходными кодами — QueueObj_noSOAW.с и QueueObjSig_noSOAW.с, в которых функция SignalObjectAndWait не используется и которые обеспечивают выполнение программы под управлением Windows 9x.

• Результаты, приведенные в приложении В, свидетельствуют о нелинейном поведении производительности при большом количестве потоков, состязающихся за доступ к очереди. Проекты для каждой из альтернативных стратегий содержатся на Web-сайте книги; эти проекты соответствуют различным вариантам конвейерной системы ThreeStage, описанной в следующих разделах.

•Резюмируя, следует подчеркнуть, что свойства очередей могут быть расширены таким образом, чтобы очередь могла совместно использоваться несколькими процессами и обеспечивать отправку или получение сразу нескольких сообщений за одну операцию. В то же время, некоторого выигрыша в производительности можно добиться за счет использования сигнальной модели, объектов CRITICAL_SECTIONS или функции SignalObjectAndWait. Соответствующие результаты представлены в приложении В. 

<p>Пример: использование очередей в многоступенчатом конвейере</p>
Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных