Читаем Системное программирование в среде Windows полностью

• Допускается существование нескольких независимых экземпляров канала, имеющих одинаковые имена. Например, с единственной серверной системой могут связываться одновременно несколько клиентов, использующих каналы с одним и тем же именем. Каждый клиент может иметь собственный экземпляр именованного канала, и сервер может использовать этот же канал для отправки ответа клиенту.

• Каждая из систем, подключенных к сети, может обратиться к каналу, используя его имя. Взаимодействие посредством именованного канала осуществляется одинаковым образом для процессов, выполняющихся как на одной и той же, так и на разных машинах.

• Имеется несколько вспомогательных и связных функций, упрощающих обслуживание взаимодействия "запрос/ответ" и клиент-серверных соединений.

Как правило, именованные каналы являются более предпочтительными по сравнению с анонимными, хотя программа 11.1 и рис. 11.1 и иллюстрируют ситуацию, в которой анонимные каналы оказываются исключительно полезными. Во всех случаях, когда требуется, чтобы канал связи был двунаправленным, ориентированным на обмен сообщениями или доступным для нескольких клиентских процессов, следует применять именованные каналы. Попытки реализации последующих примеров с использованием анонимных каналов натолкнулись бы на значительные трудности.

<p>Использование именованных каналов</p>

Функция CreateNamedPipe создает первый экземпляр именованного канала и возвращает дескриптор. При вызове этой функции указывается также максимально допустимое количество экземпляров каналов, а следовательно, и количество клиентов, одновременная поддержка которых может быть обеспечена.

Как правило, создающий процесс рассматривается в качестве сервера. Клиентские процессы, которые могут выполняться и на других системах, открывают канал с помощью функции CreateFile.

На рис. 11.2 в иллюстративной форме представлены отношения "клиент/сервер", а также псевдокод, отражающий одну из возможных схем применения именованных каналов. Обратите внимание, что сервер создает множество экземпляров одного и того же канала, каждый из которых обеспечивает поддержку одного клиента. Кроме того, для каждого экземпляра именованного канала сервер создает поток, так что для каждого клиента существует выделенный поток и экземпляр именованного канала. Следовательно, рис. 11.2 показывает, как реализовать модель многопоточного сервера, впервые представленную на рис. 7.1.

Рис. 11.2. Взаимодействие клиентов с сервером через именованные каналы

<p>Создание именованных каналов</p>

Серверами именованных каналов могут быть только системы на основе Windows NT (как обычно, здесь имеются в виду версия 4.0 и последующие); системы на базе Windows 9x могут выступать только в роли клиентов.

Прототип функции CreateNamedPipe представлен ниже.

HANDLE CreateNamedPipe(LPCTSTR lpName, DWORD dwOpenMode, DWORD dwPipeMode, DWORD nMaxInstances, DWORD nOutBufferSize, DWORD nInBufferSize, DWORD nDefaultTimeOut, LPSECURITY ATTRIBUTES lpSecurityAttributes) 

Параметры

lpName — указатель на имя канала, который должен иметь следующую форму:

\\.\pipe\[path]pipename

Точка (.) обозначает локальный компьютер; таким образом, создать канал на удаленном компьютере невозможно. 

dwOpenMode — указывает один из следующих флагов:

• PIPE_ACCESS_DUPLEX — этот флаг эквивалентен комбинации значений GENERIC_READ и GENERIC_WRITE.

• PIPE_ACCESS_INBOUND — данные могут передаваться только в направлении от клиента к серверу; эквивалентно GENERIC_READ.

• PIPE_ACCESS_OUTBOUND — этот флаг эквивалентен GENERIC_WRITE.

При задании режима могут также указываться значения FILE_FLAG_WRITE_THROUGH (не используется с каналами сообщений) и FILE_FLAG_OVERLAPPED (перекрывающиеся операции рассматриваются в главе 14).

dwPipeMode — имеются три пары взаимоисключающих значений этого параметра. Эти значения указывают, ориентирована ли запись на работу с сообщениями или байтами, ориентировано ли чтение на работу с сообщениями или блоками, и блокируются ли операции чтения.

• PIPE_TYPE_BYTE и PIPE_TYPE_MESSAGE — указывают, соответственно, должны ли данные записываться в канал как поток байтов или как сообщения. Для всех экземпляров каналов с одинаковыми именами следует использовать одно и то же значение.

• PIPE_READMODE_BYTE и PIPE_READMODE_MESSAGE — указывают, соответственно, должны ли данные считываться как поток байтов или как сообщения. Значение PIPE_READMODE_MESSAGE требует использования значения PIPE_TYPE_MESSAGE.

• PIPE_WAIT и PIPE_NOWAIT — определяют, соответственно, будет или не будет блокироваться операция ReadFile. Следует использовать значение PIPE_WAIT, поскольку для обеспечения асинхронного ввода/вывода существуют лучшие способы.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных