Читаем Системное программирование в среде Windows полностью

• Записывающей программе (клиенту) не известно достоверно, все ли, только некоторые или какая-то одна из программ считывания (сервер) получили сообщение.

• Почтовые ящики могут находиться в любом месте сети.

• Размер сообщений ограничен.

Использование почтовых ящиков требует выполнения следующих операций:

• Каждый сервер создает дескриптор почтового ящика с помощью функции CreateMailSlot.

• После этого сервер ожидает получения почтового сообщения, используя функцию ReadFile.

• Клиент, обладающий только правами записи, должен открыть почтовый ящик, вызвав функцию CreateFile, и записать сообщения, используя функцию WriteFile. В случае отсутствия ожидающих программ считывания попытка открытия почтового ящика завершится ошибкой (наподобие "имя не найдено").

Сообщение клиента может быть прочитано всеми серверами; все серверы получают одно и то же сообщение.

Существует еще одна возможность. В вызове функции CreateFile клиент может указать имя почтового ящика в следующем виде:

\\*\mailslot\mailslotname

При этом символ звездочки (*) действует в качестве группового символа (wildcard), и клиент может обнаружить любой сервер в пределах имени домена — группы систем, объединенных общим именем, которое назначается администратором сети. 

<p>Использование почтовых ящиков</p>

Рассмотренный перед этим клиент-серверный процессор командной строки предполагает несколько возможных способов его использования. Рассмотрим один из сценариев, в котором решается задача обнаружения сервера в только что упомянутой клиент-серверной системе (программы 11.2 и 11.3).

Сервер приложения (application server), действуя в качестве почтового клиента (mailslot client), периодически осуществляет широковещательную рассылку своего имени и имени именованного канала. Любой клиент приложения (application client), которому требуется найти сервер, может получить это имя, действуя в качестве сервера почтовых ящиков (mailslot server). Аналогичным образом сервер командной строки может периодически осуществлять широковещательную рассылку своего состояния, включая информацию о коэффициенте использования, клиентам. Это соответствует ситуации, в которой имеется одна записывающая программа (почтовый клиент) и несколько считывающих программ (почтовых серверов). Если бы почтовых клиентов (то есть серверов приложения) было несколько, то ситуация описывалась бы отношением типа "многие ко многим".

Возможен и другой вариант, когда одна считывающая программа получает сообщения от многочисленных записывающих программ, которые, например, предоставляют информацию о своем состоянии. Этот вариант, соответствующий, например, электронной доске объявлений, оправдывает использование термина почтовый ящик. Оба описанных варианта использования — широковещательная рассылка имени и информации о состоянии — могут быть объединены, чтобы клиент мог выбирать наиболее подходящий сервер.

Обмен ролями терминов клиент и сервер в данном контексте может несколько сбивать с толку, однако заметьте, что сервер именованного канала и почтовый сервер выполняют вызовы функций CreateNamedPipe (или CreateMailSlot), тогда как клиент (именованного канала или почтового ящика) создает соединение, используя функцию CreateFile. Кроме того, в обоих случаях первый вызов функции WriteFile выполняется клиентом, а первый вызов функции ReadFile выполняется сервером.

Использование почтовых ящиков в соответствии с первым из описанных возможных вариантов иллюстрируется на рис. 11.3.

<p>Создание и открытие почтового ящика</p>

Для создания почтового ящика и получения дескриптора, который можно будет использовать в операциях ReadFile, почтовые серверы (программы считывания) вызывают функцию CreateMailslot. На одном компьютере может находиться только один почтовый ящик с данным именем, но один и тот же почтовый ящик может использоваться несколькими системами в сети, что обеспечивает возможность работы с ним нескольких программ считывания. 

Рис. 11.3. Использование клиентами почтового ящика для обнаружения сервера

HANDLE CreateMailslot(LPCTSTR lpName, DWORD cbMaxMsg, DWORD dwReadTimeout, LPSECURITY_ATTRIBUTES lpsa) 

Параметры

lpName — указатель на строку с именем почтового ящика, которое должно иметь следующий вид:

\\.\mailslot\[путь]имя

Имя должно быть уникальным. Точка (.) указывает на то, что почтовый ящик создается на локальном компьютере.

cbMaxMsg — максимальный размер сообщения (в байтах), которые может записывать клиент. Значению 0 соответствует отсутствие ограничений.

dwReadTimeOut — длительность интервала ожидания (в миллисекундах) для операции чтения. Значению 0 соответствует немедленный возврат, а значению MAILSLOT_WAIT_FOREVER — неопределенный период ожидания (который может длиться сколь угодно долго). 

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных