Читаем Системное программирование в среде Windows полностью

 } /* Конец основного цикла обработки файлов и try-блока. */

 __except(EXCEPTION_EXECUTE_HANDLER) {

  _stprintf(ErrorMessage, _T("\n%s %s"), _T("sortBT, ошибка при обработке файла:"), argv [iFile]);

  ReportError(ErrorMessage, 0, TRUE);

 }

 return 0;

}

В программе 5.2 представлены функции, которые фактически реализуют алгоритмы поиска с использованием бинарного дерева. Первая из этих функций, FillTree, распределяет память в обеих кучах. Вторая функция, KeyCompare, используется также в нескольких других программах в данной главе. Заметьте, что функции FillTree и KeyCompare используют обработчики завершения и исключений программы 5.1, которая вызывает эти функции. Таким образом, ошибки распределения памяти будут обрабатываться основной программой, которая после этого продолжит свое выполнение, переходя к обработке следующего файла.

Программа 5.2. FillTree и другие функции управления деревом поиска 

LPTNODE FillTree(HANDLE hIn, HANDLE hNode, HANDLE hData)

/* Заполнение дерева записями из входного файла. Используется обработчик исключений вызывающей программы. */

{

 LPTNODE pRoot = NULL, pNode;

 DWORD nRead, i;

 BOOL AtCR;

 TCHAR DataHold [MAX_DATA_LEN] ;

 LPTSTR pString;

 while (TRUE) {

  /* Разместить и инициализировать новый узел дерева. */

  pNode = HeapAlloc(hNode, HEAP_ZERO_MEMORY, NODE_SIZE);

  /* Считать ключ из следующей записи файла. */

  if (!ReadFile(hIn, pNode->Key, TKEY_SIZE, &nRead, NULL) || nRead != TKEY_SIZE) return pRoot; 

  AtCR = FALSE; /* Считать данные до конца строки. */

  for (i = 0; i < MAX_DATA_LEN; i++) {

   ReadFile(hIn, &DataHold [i], TSIZE, &nRead, NULL);

   if (AtCR && DataHold [i] == LF) break;

   AtCR = (DataHold [i] == CR);

  }

  DataHold[i – 1] = '\0';

  /* Объединить ключ и данные — вставить в дерево. */

  pString = HeapAlloc(hData, HEAP_ZERO_MEMORY, (SIZE_T)(KEY_SIZE + _tcslen (DataHold) + 1) * TSIZE);

  memcpy(pString, pNode->Key, TKEY_SIZE);

  pString [KEY_SIZE] = '\0';

  _tcscat (pString, DataHold);

  pNode->pData = pString;

  InsertTree(&pRoot, pNode);

 } /* Конец цикла while (TRUE). */

 return NULL; /* Ошибка */

}

BOOL InsertTree(LPPTNODE ppRoot, LPTNODE pNode)

/* Добавить в дерево одиночный узел, содержащий данные. */

{

 if (*ppRoot == NULL) {

  *ppRoot = pNode;

  return TRUE;

 }

 /* Обратите внимание на рекурсивные вызовы InsertTree. */

 if (KeyCompare(pNode->Key, (*ppRoot)->Key) < 0) InsertTree(&((*ppRoot)->Left), pNode);

 else InsertTree(&((*ppRoot)->Right), pNode);

}

static int KeyCompare(LPCTSTR pKey1, LPCTSTR pKey2)

/* Сравнить две записи, состоящие из обобщенных символов. */

{

 return _tcsncmp(pKey1, pKey2, KEY_SIZE);

}

static BOOL Scan(LPTNODE pNode)

/* Рекурсивный просмотр и отображение содержимого бинарного дерева. */

{

 if (pNode == NULL) return TRUE;

 Scan(pNode->Left);

 _tprintf(_T ("%s\n"), pNode->pData);

 Scan(pNode->Right);

 return TRUE;

} 

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных