Читаем Системное программирование в среде Windows полностью

LPVOID HeapReAlloc(HANDLE hHeap, DWORD dwFlags, LPVOID lpMem, SIZE_T dwBytes)

Возвращаемое значение: в случае успешного выполнения — указатель на перераспределенный блок памяти; в противном случае функция возвращает NULL или вызывает исключение. 

Параметры

• HEAP_GENERATE_EXCEPTIONS и HEAP_NO_SERIALIZE: это те же флаги, которые были описаны при рассмотрении функции HeapAlloc.

• HEAP_ZERO_MEMORY: нулями инициализируется лишь вновь распределенная память (когда значение параметра dwBytes превышает первоначальный размер блока). Содержимое исходного блока не изменяется.

• HEAP_REALLOC_IN_PLACE_ONLY: установка этого флага запрещает перемещение блока при перераспределении памяти. Если вы увеличиваете размер блока, адреса добавляемой памяти будут располагаться непосредственно вслед за адресами памяти, занимаемой существующим блоком.

lpMem — указывает на блок памяти, перераспределяемый из кучи hHeap. 

dwBytes — размер нового блока памяти, который может быть как меньше, так и больше размера существующего блока.

Обычно возвращенный указатель имеет то же значение, что и указатель lpMem. В то же время, если блок перемещается (чтобы такое перемещение было разрешено, следует при вызове функции опустить флаг HEAP_REALLOC_IN_PLACE_ONLY), то возвращенное значение будет другим. Следите за своевременным изменением любых ссылок на блок. Независимо от того, перемещается блок или не перемещается, содержащиеся в нем данные остаются неизменными; в то же время, при уменьшении блока часть данных может теряться.

Размер распределенного блока памяти можно определить, вызвав функцию HeapSize (эту функцию следовало бы назвать BlockSize, поскольку о размере кучи она ничего не сообщает), используя в качестве параметров дескриптор кучи и указатель на блок. 

DWORD HeapSize(HANDLE hHeap, DWORD dwFlags, LPCVOID lpMem)

Возвращаемое значение: в случае успешного выполнения — размер блока; иначе — ноль.

Флаг HEAP_NO_SERIALIZE

При вызове функций HeapCreate, HeapAlloc и HeapReAlloc можно указывать флаг HEAP_NO_SERIALIZE. Использование этого флага иногда обеспечивает незначительный выигрыш в производительности, поскольку во время обращения функции к куче взаимоисключающая блокировка к потокам в этом случае применяться не будет. Результаты простых тестов, в которых не делалось ничего, кроме распределения блоков памяти, показали повышение производительности примерно на 16 процентов. Этот флаг без какого бы то ни было риска можно использовать в следующих ситуациях:

• Программа не использует потоки (глава 7), или, точнее, процесс (глава 6) имеет только один поток. В данной главе этот флаг используется во всех примерах.

• Каждый поток имеет собственную кучу или набор куч, и никакой другой поток не имеет доступа к этой куче.

• Программа располагает собственным механизмом взаимоисключающей блокировки, который предотвращает одновременный доступ к куче сразу нескольких потоков, использующих функции HeapAlloc и HeapAlloc. Для этой цели также могут применяться функции HeapLock и HeapUnlock. 

Флаг HEAP_GENERATE_EXCEPTIONS

Разрешение исключений вместо возврата значений NULL в случае сбоев при распределении памяти позволяет избавиться от утомительной необходимости тестирования результатов каждой попытки такого распределения. К тому же, обработчики исключений или завершения могут производить очистку памяти, которая к этому моменту была частично распределена. Эта методика применена в нескольких примерах.

Возможны два кода исключения:

1. STATUS_NO_MEMORY: это значение указывает на то, что системе не удалось создать блок запрошенного объема. Причинами этого могут быть фрагментация памяти, достижение нерастущей кучей максимально допустимого размера или исчерпание всей доступной памяти растущими кучами.

2. STATUS_ACCESS_VIOLATION: это значение указывает на повреждение кучи.

Одной из возможных причин этого может быть выполнение программой записи в память с выходом за границы распределенного блока.

<p>Другие функции кучи</p>

Функция HeapCompact пытается уплотнить, или дефрагментировать, смежные блоки в куче. Функция HeapValidate пытается обнаруживать повреждения кучи. Функция HeapWalk перечисляет блоки в куче, а функция GetProcessHeaps получает все действительные дескрипторы куч.

Функции HeapLock и HeapUnlock позволяют потоки сериализовать доступ к куче, о чем говорится в главе 8.

Перейти на страницу:

Похожие книги

C++: базовый курс
C++: базовый курс

В этой книге описаны все основные средства языка С++ - от элементарных понятий до супервозможностей. После рассмотрения основ программирования на C++ (переменных, операторов, инструкций управления, функций, классов и объектов) читатель освоит такие более сложные средства языка, как механизм обработки исключительных ситуаций (исключений), шаблоны, пространства имен, динамическая идентификация типов, стандартная библиотека шаблонов (STL), а также познакомится с расширенным набором ключевых слов, используемым в .NET-программировании. Автор справочника - общепризнанный авторитет в области программирования на языках C и C++, Java и C# - включил в текст своей книги и советы программистам, которые позволят повысить эффективность их работы. Книга рассчитана на широкий круг читателей, желающих изучить язык программирования С++.

Герберт Шилдт

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных